Experimental models of renal tubulointersitial damade in arterial hypertension


Cite item

Full Text

Abstract

Experimental models of tubulo-interstitial damage and it's significance in arterial hypertension are discussed

References

  1. Dahl LK, Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res 1975; 36: 692-696
  2. Fox U, Bianchi G. The primary role of the kidney in causing blood pressure difference between the Milan hypertensive strain (MHS) and normotensive rats. Clin Exp Pharmacol Physiol 1976; 3(Suppl 3): 71-74.
  3. Kawabe K, Watanabe TX, Shiono K, Sokabe H. Influence on blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing F1 hybrids. Jpn Heart J 1978;19:886-894.
  4. Curtis JJ, Luke RG, Dustan HP, et al. Remission of essential hypertension after renal transplantation. N Engl J Med 1983; 309: 1009-1015
  5. Richard J. Johnson, M.D., Jaime Herrera-Acosta, M.D., George F. Schreiner, M.D., Ph.D., and Bernardo Rodríguez-Iturbe, M.D. Subtle Acquired Renal Injury as a Mechanism of Salt-Sensitive Hypertension. Mechanisms of Disease. N Engl J Med 2002; 346: 913-923
  6. Cowley AW, Roman RJ. The role of the kidney in hypertension. JAMA 1996;275:1581-1589 7. . Hawkins. National Heart, Lung, and Blood Institute (NHLBI). Hypertension Detection and Follow-Up Program (HDFP). Last Updated on December 21, 2005
  7. Veterans administration cooperative study group on antihypertensive agents. Effecta of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. J. Am. Med. Assoc. 1970; 213(7): 1143-1152
  8. Siewert-Delle A., Liungman S., Andersson O.K., Wilhemsen L. Does treated primary hypertension lead to end-stage renal deisease? A 20-year follow-up of Primary Prevention Study in Goteborg, Sweden. Nephrol. Dial Transplant 1998; 13: 3084 - 3090
  9. Klag M.J., Whelton P.K., Randall B.K. et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996. 334: 13 - 18
  10. Tozawa M., Iseki K., Iseki C. et al. Blood pressure predicts risk of developing of end-stage renal disease in men and women. Hypertension 2003 41: 1341 - 1345
  11. Innes A., Johnston P.A., Morgan A.G. et al. Clinical features of benign hypertensive nephrosclerosis at time of renal biopsy. Quart J Med 1993 86:271-275.
  12. Li LS, Liu ZH, Epidemiologic data of renal diseases from a single unit in China: Analysis based on 13,519 renal biopsies. Kidney Int. 2004; 66 :920-923.
  13. Vikse B. E. Nephrol. Clinical prognostic factors in biopsy-proven benign nephrosclerosis. Nephrol.Dial Transplant 2003 18: 517 -23
  14. Батюшин М.М., Повилайтите П.Е. Клиническая нефрология. Руководство. Издательство Элиста: ЗАОр НПП «Джангар», 2009. 457 - 458.
  15. Risdon RA, Sloper JC, de Vardener HE. Relationship between renal function and histologic changes found in renal biopsy specimens from patients with persistent glomerulonephritis. Lancet. 1968; 2: 363-366.
  16. Schainuck, LI, Stricker, GE, Cutler, RE, Benditt, EP. Structural-functional correlations in renal disease. Hum Pathol. 1970: 1: 631-641.
  17. В.В. Савош, Т.А. Летковская, Е.Д. Черствый, А.В. Сукало. Клеточные механизмы формирования тубулоинтерстициальных изменений при первичных гломерулопатиях. Белорусский государственный медицинский университет. 2007
  18. Крстич Р.В. Иллюстрированная энциклопедия по гистологии человека. Издательство Сотис: СПб., 2001. 138 с.
  19. Козловская, Л.В., Бобкова, И.Н., Варшавский В.А. и др. Фибронектин мочи как показатель процессов фиброзирования в почках при нефрите. Тер. арх. 1999; 6: 34-38.
  20. D'Amico, G, Ferrario, F, Rastaldi, MP. Tubulointerstitial damage in glomerular diseases: its role in the progression of renal damage. Am J Kidney Dis. 1995; 26: 124-132.
  21. Fine, L.G, Ong, A.C.M., Norman, J.T. Mechanisms of tubulointerstitial injury in progressive renal diseases. Eur J Clin Invest. 1993; 23: 259-265.
  22. Strutz, F., Neilson, E.G. New insights into mechanisms of fibrosis in immune injury. Springer Seminars in Immunopathology. 2003; 24(4): 459-476.
  23. Kairaitis, L.K., Harris, D.C. Tubular-interstitial interactions in proteinuric renal diseases. Nephrology. 2001; 6: 198-207.
  24. Sánchez-Lozada L.G., Tapia E., Johnson R.J. et al. Glomerular hemodynamic changes associated with arteriolar lesions and tubulointerstitial inflammation. Kidney International 2003; 64: S9-S14.
  25. Takase O, Hirashi J, Takayanagi A. et al Gene transfer of truncated IkBa prevents tubulointerstitial injury.Kidney Int 2003; 63 : 501−513.
  26. Alvarez V, Quiroz Y., Nava M. et al Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. Am J Physiol Renal Physiol 2002; 283: F1132−F1141
  27. Eddy A.A., Giachelli C.M. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int 1995; 47: 1546−1557.
  28. Zoja C, Donadelli R & Colleoni S. et al Protein overload stimulated RANTES production by proximal tubular cells depending on NF-kB activation. Kidney Int 1998; 53 : 1608−1615.
  29. Tang S, Leunhg JCK & Abe K. et al Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest 2003; 111 : 515−527.
  30. Gómez-Garre D, Largo R & Tejera N. et al Activation of NF-kB in tubular epithelial cells of rats with intense proteinuria. Role of angiotensin II and endothelin-1. Hypertens 2001; 37: 1171−1178.
  31. Largo R, Gómez-Garre D & Soto K. et al Angiotensin-converting enzyme is upregulated in the proximal tubules of rats with intense proteinuria. Hypertens 1999; 33 : 732−739.
  32. Helle F. , Vagnes O.B. , Iversen B.M. Angiotensin II-induced calcium signaling in the afferent arteriole from rats with two-kidney, one-clip hypertension. Am. J. Physiol. Renal Physiol. 2006; 291: F140-F147.
  33. Ingelfinger J.R., Dzau V.J. Molecular biology of renal injury: emphasis on the role of the rennin-angiotensin system. J. Am. Soc. Nephrol. 1991;2: S9-S20.
  34. Steinmetz O.M. , Sadaghiani S. , Panzer U., et al. Antihypertensive therapy induces compartment-specific chemokine expression and a Th1 immune response in the clipped kidney of Goldblatt hypertensive rats. Am. J. Physiol. Renal Physiol. 2007; 292: F876-F887.
  35. Haller H. , Park J. -K., Dragun D. , et al. Leukocyte infiltration and ICAM-1 expression in two-kidney one-clip hypertension. Nephrol. Dial. Transplant. 1997; 12: 899-903.
  36. Florian J.A., Watts S.W. Epidermal growth factor: a potent vasoconstrictor in experimental hypertension. Am. J. Physiol. Heart Circ. Physiol. 1999; 276: 976-983.
  37. Wiesel P., Mazzolai L., Nussberger J., et al. Two-kidney, one clip and one- kidney, one clip hypertension in mice. Hypertension. 1997; 29: 1025-1030.
  38. Dobrian A. , Wade S.S., Prewitt R.L. PDGF-A expression correlates with blood pressure and remodeling in 1K1C hypertensive rat arteries. Am. J. Physiol. Heart Circ. Physiol. 1999; 276: 2159-2167
  39. De Champlain J, Mueller R.A, Axelrod J. Turnover and synthesis of norepinephrine in experimental hypertension in rats. Circ Res 1969; 25:285-291.
  40. Schenk J, McNeill J.H. The pathogenesis of DOCA-salt hypertension. J Pharmacol Toxicol Methods 1992; 27:161-170.
  41. De Champlain J, Krakoff L.R, Axelrod J. Catecholamine metabolism in experimental hypertension in the rat. Circ Res 1967; 20:136-145.
  42. Hilditch A, Hunt A.A, Gardner C.J. et al. Cardiovascular effects of GR117289, a novel angiotensin AT1 receptor antagonist. Br J Pharmacol 1994; 111:137-144.
  43. Li J.S, Schurch W, Schiffrin E.L. Renal and vascular effects of chronic endothelin receptor antagonism in malignant hypertensive rats. Am J Hypertens 1996; 9:803-811.
  44. Garwitz E.T, Jones A.W. Aldosterone infusion into the rat and dose-dependent changes in blood pressure and arterial ionic transport. Hypertension 1982; 4:374-381
  45. White P.C. Inherited forms of mineralocorticocoid hypertension. Hypertension 1996; 28: 927-936.
  46. Sheila A. Doggrell, Lindsay Brown. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovascular Research. 1998; 89; 39 - 41
  47. Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92: 1993;1686-1696
  48. Ikeda T, Shirasawa T, Esaki Y, Yoshiki S, Hirokawa K. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest 1993; 92: 2814-2820
  49. Chun T.-Y., Chander P.N., Kim J.W. et al. Aldosterone, but not angiotensin II, increases profibrotic factors in kidney of adrenalectomized stroke-prone spontaneously hypertensive rats. American Journal of Physiology - Endocrinology and Metabolism. 2008 295:E305 - E312.
  50. Arteel GE, Thurman RG, Raleigh JA Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur J Biochem 1998; 253: 743-750
  51. Matsumoto M., Tanaka T., Yamamoto T. et al. Hypoperfusion of Peritubular Capillaries Induces Chronic Hypoxia before Progression of Tubulointerstitial Injury in a Progressive Model of Rat Glomerulonephritis. J Am Soc Nephrol 2004; 15:1574-1581

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies