Lipid metabolism in chronic kidney disease


Дәйексөз келтіру

Толық мәтін

Аннотация

Mechanisms of development and pathologic consequences of lipid metabolism disturbannces in chronic kidney disease are reviewed.

Негізгі сөздер

Әдебиет тізімі

  1. Sarnak MJ., Levey A. Cardiovascular disease and chronic renal disease: a new paradigm. Am J Kidney Dis. 2000; 35 (4); S117-131.
  2. Attman P.O., Alaupovic P., Tavella M., Knight-Gibson C. Abnormal lipid and apolipoprotein composition of major lipoprotein density classes in patients with chronic renal failure. Nephrol Dial Transplant. 1996; 11: 63-69.
  3. И.М. Кутырина, Т.Е. Руденко, Швецов М.Ю. Почечная недостаточность как фактор «старения» сосудов. Тер. арх. 2007; 6: 49-52.
  4. Kwan B., Kronenberg F., Beddhu S., Cheung A. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol. 2007; 18: 1246-1261.
  5. Vaziri N.D. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006; 290: F262-F 272.
  6. Lacquaniti A., Bolignano D., Donato V. et al. Alteration of lipid metabolism in chronic nephropathies: mechanisms, diagnosis and treatment. Kidney Blood Press Res. 2010; 33: 100-110.
  7. Vaziri N.D. Molecular mechanisms of lipid dysregulation in nephrotic syndrome. Kidney Int. 2003; 63:1964-1976
  8. Kurukulasuriya LR., Athappan G., Saab G., et al. HMG CoA- reductase inhibitors and renoprotection: the weight of evidence. Therapeutic advances in cardiovascular disease. 2007; 1 (1): 49-59.
  9. Shoji T., Nishizawa Y. Billheimer JT, et al. Impaired metabolism of high density lipoprotein in uremic patients. Kidney Int. 1992; 41: 1653-1661.
  10. Vaziri ND, Liang K., Parks JS. Downregulation of lecithin: cholesterol acyltransferase (LCAT) in chronic renal failure. Kidney Int. 2001; 59: 2192- 2196.
  11. Kimura H., Miyazaki R., Imura T., et al. Hepatic lipase mutation may reduce vascular disease prevalence in hemodialysis patients with high CETP level. Kidney Int. 2003; 64: 1829-1837.
  12. De Sain-van der Velden MG., Rabelink TJ., Reijnhoud DJ., et al. Plasma α-2 мacroglobulin in increased in nephrotic patients as a result of increased synthesis alone. Kidney Int. 1998; 54: 530 - 535.
  13. Klin M., Smogorzewski M., Ni Z., et al. Abnormalities in hepatic lipase in chronic renal failure: role of exess parathyroid hormone. J Clin Invest. 1996; 97: 2167 - 2173.
  14. Attman P.O., Samuelsson O., Johansson AC., et al. Dialysis modalities and dyslipidrmia. Kidney Int. Suppl. 2003; 84: S 110 - S 112.
  15. Vaziri ND, Deng G., Liang K. Hepatic LDL receptor, SR-B1 and Apo A-Ι expression in chronic renal failure. Nephrol Dial Transplant. 1999; 14: 1462- 1466.
  16. Liang K., Vaziri ND. Downregulation of hepatic high-density lipoprotein receptor, SR-B1 in nephrotic syndrome. Kidney Int. 1999; 56: 621 - 626.
  17. Liang K., Vaziri ND. Upregulation of acyl-CoA: cholesterol acyl-transferase in chronic renal failure. Am J Physiol. Endocrinol Metab. 2002; 283: E 676-E 681.
  18. Vaziri ND., Liang K. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure. Am J Physiol Renal Physiol. 2004; 287: F 1038-F 1043.
  19. Dantoine TF., Debord J., Charmes JP., et al. Decrease of serum paraoxonase activity in chronic renal failure. J Am Soc Nephrol. 1998; 9: 2082-2088.
  20. Navab M., Hamma SY., Reddy ST., et al. Oxidized lipids as mediators of coronary heart disease. Curr Opin Lipidol. 2002; 13: 363-372.
  21. Solakivi T., Jaakkola O., Salomaki A., et al. HDL enhances oxidation of LDL in vitro in both men and women. Lipids Health Dis. 2005; 4: 25.
  22. Vaziri ND., Moradi H. Mechanisms of dyslipidemia of chronic renal failure. Hemodial Int. 2006; 10: 1-7.
  23. Prichard S. Impact of dyslipidemia in end-stage renal disease. J Am Soc Nephrol. 2003;14: S315-S320.
  24. Mark RH., DeFronzo RA. Glucose and insulin metabolism in uremia. Nephrol. 1992; 61: 377-382.
  25. Kaysen Ga. Dyslipidemia in chronic kidney disease: cause and consequences. Kidney Int. 2006; 70: S55- S58.
  26. Trevisan R., Dodesini AR., Lepore G. Lipids and renal disease. J Am Soc Nephrol. 2006;17: S145-S147.
  27. Vaziri ND., Liang K. Downregulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996; 50: 1928 - 1935.
  28. Chan MK., Persaud J., Varghere Z., Moorheard JF. Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int. 1984; 25: 812 - 818.
  29. Cheung AK., Parker CJ., Ren K., Iverius PH. Increased lipase inhibition in uremia: identification of pre-β-HDL as a major inhibitor in normal and uremic plasma. Kidney Int. 1996; 49: 1360 - 1367.
  30. Vaziri ND., Wang XQ., Liang K. Secondary hyperparathyroidism down-regulates lipoprotein lipase expression in chronic renal failure. Am J Physiol Renal Physiol. 1997; 273: F 925 -F 930.
  31. Attman P.O., Samuelsson O., Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993; 21: 573-592.
  32. Kim C., Vaziri ND. Down-regulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005; 67: 1028 - 1032.
  33. Liang K., Oveisi F., Vaziri ND. Role of secondary hyperparathyroidism in the genesis of hypertriglyceridemia and VLDL receptor deficiency in chronic renal failure. Kidney Int. 1998; 53: 626 - 630.
  34. Vaziri ND., Liang K. Down-regulation of VLDL receptor expression in experimental chronic. Kidney Int. 1997; 51: 913 - 919.
  35. Ikewaki K., Schaefer JR., Frischmann ME., at al. Delayed in vivo catabolism of intermediate-density lipoprotein and low-density lipoprotein in hemodialysis patients as potential cause of premature atherosclerosis. Arterioscler Thromb Vasc Biol. 2005; 25: 2615-2622.
  36. Cheung AK. Is lipid control necessary in hemodialysis patients? Clin J Am Soc Nephrol. 2009; 4: S95-S101.
  37. Kronenberg F., Kuen E., Ritz E., et al. Lipoprotein(a) serum concentrations and apolipoprotein(a) phenotypes in mild and moderate renal failure. J Am Soc Nephrol. 2000; 11: 105-115.
  38. Kronenberg F., Konig P., Neyer U., et al. Multicenter study of lipoprotein(a) phenotypes in patients with end-stage renal disease. J Am Soc Nephrol. 1995; 6: 110-120.
  39. Dieplinger H., Lackner C., Kronenberg F., et al. Elevated plasma concentrations of lipoprotein(a) in patients with end-stage renal disease are not related to the size polymorphism of apolipoprotein(a). J Clin Invest. 1993; 91: 397-401.
  40. Milionis HJ., Elisaf MS., Tselepis A., et al. Apolipoprotein(a) phenotypes and lipoprotein(a) concentrations in patients with renal failure. Am J Kidney Dis. 1999; 33: 1100-1106.
  41. Stenvinkel P., Heimburger O., Tuck CH., et al. Apo (a)-isoform size, nutrition status and inflammatory markers in chronic renal failure. Kidney Int. 1998; 53: 1336 - 1342.
  42. Zimmermann J., Herrlinger S., Pruy A., et al. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999; 55: 648 - 658.
  43. Kronenberg F., Lingenhel A., Lhotta K., et al. The apolipoprotein(a) size polymorphism is associated with nephrotic syndrome. Kidney Int. 2004; 65: 606 - 612.
  44. De Sain-Van Der Velden MG., Reijnhoud DJ., Kaysen GA., et al. Evidence for increased synthesis of lipoprotein(a) in nephrotic syndrome. J Am Soc Nephrol. 1998; 9: 1474-1481.
  45. Kronenberg F., Lhotta K., Konig P., et al. Apolipoprotein(a) isoform-specific changes of lipoprotein(a) after kidney transplantation. Eur J Hum Genet. 2003; 11: 693-699.
  46. Kerschdorfer L., Konig P., Neyer U., et al. Lipoprotein(a) plasma concentrations after renal transplantation: a prospective evaluation after 4 years of follow-up. Atherosclerosis. 1999: 144: 381-391.
  47. Frischmann KE., Kerschdorfer F., Trenkwalder E., et al. In vivo turnover study demonstrate diminished clearance of lipoprotein(a) in hemodialysis patients. Kidney Int. 2007; 71: 1035 - 1043.
  48. Stenvinkel P., Heimburger O., Paultre F., et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999; 55: 1899 - 1911.
  49. Boes E., Fliser D., Ritz E., et al. Apolipoprotein A-IV predicts progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol. 2006; 17: 528 -536.
  50. Seishima M., Muto Y. An increased apo A-IV serum concentration of patients with chronic renal failure on hemodialysis. Clin Chim Acta. 1987: 167; 303-311.
  51. Haiman M., Salvenmoser W., Scheiber K., et al. Immunohistochemical localization of apolipoprotein A-IV in human kidney tissue. Kidney Int. 2005; 68: 1130 - 1136.
  52. Lingenhel A., Lhotta K., Neyer U., et al. Role of the kidney in metabolism of apolipoprotein A-IV: influence of the type of proteinuria. J Lipid Res. 2006; 47: 2071-2079.
  53. Cмирнов А.В. Факторы, определяющие уровень показателей липидного обмена у больных гломерулонефритом без нарушения функции почек и при хронической почечной недостаточности, на фоне консервативной терапии. Нефрология. 2000; 4 (1): 34-43.
  54. Ртищева О.В., Калев О.Ф. Возрастно-половые особенности показателей липидного обмена у больных, получающих лечение программным гемодиализом. Клиническая нефрология. 2010; 4: 55-58.
  55. Blankestijn PJ., Vos PF., Rabelink TJ., et al. High-flux dialysis membranes improve lipid profile in chronic hemodialysis patients. J Am Soc Nephrol. 1995; 5: 1703-1708.
  56. Cases A, Coll E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int. 2005; Suppl 99: S87-S93.
  57. Joles JA., Kunter U., Janssen U., et al. Early mechanisms of renal injure in hypercholesterolemic or hypertrigyceridemic rats. J Am Soc Nephrol. 2000; 11: 669- 683.
  58. Keane WF., Kasiske BL., O Donnel MP. Lipids and progressive glomerulosclerosis. A model analogous to atherosclerosis. Am J Nephrol. 1988; 8: 261-271.
  59. Abrass CK. Cellular lipid metabolism and the role of lipids in progressive renal disease. Am J Nephrol. 2004; 24: 46-53.
  60. Scheuer H., Gwinner W., Hohbach J., et al. Oxidant stress in hyperlipidemia-induced renal damage. Am J Physiol Renal Physiol. 2000; 278: F 63 -F 74.
  61. De Cosmo S., Bacci S., Piras GP., et al. High prevalence of risk factors for cardiovascular disease in patients in parents of IDMM patients with albuminuria. Diabetologia. 1997; 40: 1191-1196.
  62. Moorhead JF., Chan MK., El-Nahas M. Verghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet. 1982; 2: 1209-1311.
  63. Muntner P., Coresh J., Smith JC. Plasma lipid and risk of developing renal dysfunction: the Atherosclerosis Risk Communities. Kidney Int. 2000; 58: 293 - 301.
  64. Schaeffner ES., Kurth T., Curhan GC., et al. Cholesterol and the risk of renal dysfunction in apparently healthy men. J Am Soc Nephrol. 2003; 14: 2084 - 2091.
  65. Fox CS., Larson MG., Leip EP., Culleton B. Predictors of new onset kidney disease in a community-based population. JAMA. 2004; 291: 844-850.
  66. Hsu CY., Bates DW., Kuperman GL., Curhan GC. Diabetes, haemoglobin A(1c), cholesterol, and the risk of moderate chronic renal insufficiency in an ambulatory population. Am J Kidney Dis. 2000: 36; 272-281.
  67. Segura J., Campo C., Gill P., et al. Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients. J Am Soc Nephrol. 2004; 15: 1616 - 1622.
  68. Manttary M., Tiula E., Alikoski T., et al. Effect of hypertension and dyslipidemia on the declain in renal function. Hypertension. 1995; 26: 670-675.
  69. Ravid M., Brosh D., Ravid-Safran D., et al. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure and hyperglycemia. Arch Intern Med. 1998: 158; 998-1004.
  70. Hadjadj S., Duly-Bouhanick B., Bekherraz A., et al. Serum triglycerides are predictive factor for development and progression of renal and retinal complications in patients with type 1 diabetes. Diabetes Metab. 2004: 30; 43-51.
  71. Hunsicker LG., Adler S., Caggiula A., et al. Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int. 1997; 51: 1908 - 1919.
  72. Samuelsson O., Mulec H., Knight-Gibson C., et al. Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol Dial Transplant. 1997; 12: 1908- 1915.
  73. Washio M., Okuda S., Ikeda M., et al. Hypercholesterolemia and the progression of renal dysfunction in chronic renal failure patients. J Epidemiol. 1996; 6: 172-177.
  74. Locatelli F., Alberti D., Graziani G., et al. Factors affecting chronic renal failure progression: Results from a multicentre trail. The Northern Italian Cooperative Study Group. Miner Elrctrolyte Metab. 1992; 18: 295-302.
  75. Cusick M., Chew EY., Hoogwerf B., et al. Risk factors for renal replacement therapy in Early Treatment Diabetic Retinopathy Study (ETDRS). Report No. 26. Kidney Int. 2004; 66: 1173 - 1179.
  76. Lowrie EG., Lew NL. Death risk in hemodialysis patients: The predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990; 15: 458-482.
  77. Lowrie EG., Lew NL. Commonly measured laboratory variables in hemodialysis patients: Relation among them and to death risk. Semin Nephrol. 1992; 12: 276-283.
  78. Iseki K., Yamazato M., Tozawa M., Takishita S. Hypocholesterolemia is a significant predictor of death in the cohort of chronic hemodialysis patients. Kidney Int. 2002; 61: 1887 - 1893.
  79. Longenecker JC., Coresh J., Powe NR., et al. Traditional cardiovascular risk factors in dialysis patients compared with general population: The CHOICE Study. J Am Soc Nephrol. 2002; 13: 1918 - 1927.
  80. Shoji T., Masakane I., Watanabe Y., et al. Elevated non-high-density lipoprotein cholesterol (non-HDL-C) predicts atherosclerosis cardiovascular events in hemodialysis patients. JASN.2011; 6 (5): 1112-1120.
  81. И.М. Кутырина, Руденко Т.Е., Швецов М.Ю., Кушнир В.В. Факторы риска сердечно-сосудистых осложнений у больных на додиализной стадии хронической почечной недостаточности. Терапевтический архив. 2006; 5: 54-50.
  82. London GM., Marchails SJ., Safar ME., et al. Aortic and large arterial compliance in end-stage renal disease. Kidney Int. 1990; 37: 137 - 142.
  83. Cheung AK., Sarnak MJ., Yan G., et al. HEMO Study. Atherosclerotic cardiovascular disease risk in chronic hemodialysis patients. Kidney Int. 2000; 58: 353 - 362.
  84. Chawla V., Green T., Beck GJ., et al. Hyperlipidemia and long-term outcomes in nondiabetic chronic kidney disease. JASN. 2010. 5; 1582-1587.
  85. Shoji T., Nishizawa Y., Kawagishi T., et al. Intermediate-density lipoprotein as an independent risk factor for aortic atherosclerosis in hemodialysis patients. J Am Soc Nephrol. 1998; 9: 1277 - 1284.
  86. Koch M., Kutkuhn B., Trenkwalder E., et al. Apolipoprotein B, fibrinogen, HDL cholesterol and apolipoprotein(a) phenotypes predict coronary artery disease in hemodialysis patients. J Am Soc Nephrol. 1997; 8: 1889 - 1898.
  87. Kronenberg F., Neyer U., Lhotta K., et al. The low molecular weight apo (a) phenotype is an independent predictor for coronary artery disease in hemodialysis patients. A prospective follow-up. J Am Soc Nephrol. 1999; 10: 1027 - 1036.
  88. Kronenberg F., Stuhlinger M., Trenkwalder E., et al. Low apolipoprotein A-IV plasma concentrations in men with coronary artery disease. J Am Coll Cardiol. 2000; 36: 751-757.
  89. Warner MM., Guo J., Zhao Y. The relationship between plasma apolipoprotein A-IV levels and coronary heart disease. Clin Med J (Engl). 2001; 114: 275-279.
  90. Kronenberg F., Kuen E., Ritz E., et al. Apolipoprotein A-IV serum concentrations are elevated in mild and moderate renal failure. J Am Soc Nephrol. 2002; 13: 461 - 469.
  91. Apostolov E., Ray D., Savenka A., et al. Chronic uremia stimulates LDL carbamylation and atherosclerosis. JASN.
  92. Rutkowski B., Szolkiewicz M., Korczynska J., et al. The role of lipogenesis in the development of uremic hyperlipidemia. Am J Kidney Dis. 2003; 41: S84-S88.
  93. Szolkiewicz M., Neiweglowski T., Korczynska J., et al. Upregulation of fatty acid synthase gene expression in experimental chronic renal failure. Metabolism. 2002; 51: 1605-1610.
  94. Weinstock PH., Levak-Frank S., Hudgins LC., et al. Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc Natl Acad Sci USA. 1997; 94: 10261-10266.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>