Modern view on the sodium exchange


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The imbalance between consumption of salt and its elimination leads to a change in the filling of the vascular system (fluid volume), which changes the blood pressure level, i.e. in real time, the pressure level determines the ability of the kidneys to remove sodium - this relationship was called the "pressure - natriuresis curve". This ratio is continuously changing, converging to equilibrium. It is important to remember that healthy kidneys can withstand the load of salt, about 40-50 times higher than the normal level of the Na+ daily requirement. The current level of knowledge allows us to consider that the mechanisms ensuring the retention of Na+ (ion exchange pumps), in case of excessive salt intake do not have time to reabsorb the proper amount of Na+ cations at the level of the proximal tubules and the ascending limb of the Henle loop. The largest recent studies have shown that a significant amount of sodium can accumulate in the interstitium without causing fluctuations in the plasma sodium concentration and a compensatory increase in the retention of H2O, i.e. with a constant blood sodium concentration, the total sodium level can vary significantly. Glycosaminoglycans (GAGs) "soften" the fluctuations in the plasma sodium concentration, "hide" sodium from the osmoreceptors, which prevents process of increasing vasopressin secretion and the growth of water retention, mandatory in such a situation. On the other hand, the deposited sodium cations do not reach the nephron, which makes them difficult to excrete from the body. With a decrease in the level of sodium intake, the GAGs polymerization decreases, the decrease in GAGs is accompanied by a massive release of sodium from the reserve. With prolonged overload of GAGs by sodium, damage to macromolecules occurs, and the buffer properties of GAGs are violated. In particular, in salt-sensitive patients this will lead to a sharp increase in blood pressure, patients with in CHF - to the RAAS hyperactivation. We can assume a certain parallelism between sodium intake and gag level in the interstitial tissue, which is necessary for its accumulation. The change in the ratio of the structural components of tissues will lead to a change in their properties, incl. physical, for example, myocardium stiffness, its elastic properties, arterial stiffness, and striated muscle exercise capacity.

Full Text

Restricted Access

About the authors

D. O Dragunov

FSBEI HE "Russian National Research Medical University n.a. N.I. Pirogov" of RMH; SBI "Scientific Research Institute of Health Organization and Medical Management of the Moscow Healthcare Department"

Email: tamops2211@gmail.com
PhD of Medical Sciences, Associate Professor at the Department of Propaedeutics of Internal Diseases, General Physiotherapy and Radiation Diagnostics of the Pediatric Faculty Moscow, Russia

G. P Arutyunov

FSBEI HE "Russian National Research Medical University n.a. N.I. Pirogov" of RMH

Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Propaedeutics of Internal Diseases, General Physiotherapy and Radiation Diagnostics of the Pediatric Faculty Moscow, Russia

A. V Sokolova

FSBEI HE "Russian National Research Medical University n.a. N.I. Pirogov" of RMH; SBI "Scientific Research Institute of Health Organization and Medical Management of the Moscow Healthcare Department"

PhD in Medical Sciences, Teaching Assistant at the Department of Propaedeu-tics of Internal Diseases, General Physiotherapy and Radiation Diagnostics of the Pediatric Fac-ulty, Leading Specialist at the Organiza-tional and Methodological Department for the Therapy Moscow, Russia

References

  1. Ponikowski P.A., Voors A.D., Anker S., Bueno H., Cleland J.J.S., Coats A., Falk V., González-Juanatey J., Harjola V.A., Jankowska E., Jessup M., Linde C., Nihoyannopoulos P.T., Parissis J., Pieske B.P., Riley J.M.C., Rosano G.M., Ruilope L., Ruschitzka F.H., Rutten F., van der Meer P. Рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности 2016. Российский кардиологический журнал. 2017;(1):7-81. doi: 10.15829/1560-4071-2017-1-7-81
  2. Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П., Коротеев А.В., Мареев Ю.В.,Овчинников А.Г. Национальные рекомендации ВНОК и ОССН по диагностике и лечению ХСН (третий пересмотр). Сердечная недостаточность. 2010;11(1):3-62.
  3. АрутюновА.Г.,ДрагуновД.О., Арутюнов Г.П., Рылова А.К., Пашкевич Д.Д., Витер К.В. Первое открытое исследование синдрома острой декомпенсации сердечной недостаточности и сопутствующих заболеваний в Российской Федерации. Кардиология. 2015;55(5):12-21.
  4. Kopp C., Linz P., Dahlmann A., Hammon M., Jantsch J., Müller D.N.,Schmieder R.E., Cavallaro A., Eckardt K.U., Uder M., Luft F.C., Titze J. 23Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients. Hypertension. 2013;61(3):635-640.
  5. Titze J. A different view on sodium balance. Curr. Opin. Nephrol. Hypertens. 2015;24(1):14-20.
  6. Martel C., Li W., Fulp B., Platt A.M., Gautier E.L., Westerterp M., Bittman R., Tall A.R., Chen S.H., Thomas M.J., Kreisel D., Swartz M.A., Sorci- Thomas M. G., Randolph G.J. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Invest. 2013;123(4):1571-1579.
  7. SchatzV., Neubert P., Schröder A., Binger K., Gebhard M., Müller D.N., Luft F. C., Titze J., Jantsch J. Elementary immunology: Na(+) as a regulator of immunity. Pediatr. Nephrol. Berl. Ger. 2016.
  8. Laffer C.L., Scott R.C. 3rd, Titze J.M., Luft F.C., Elijovich F. Hemodynamics and Salt-and-Water Balance Link Sodium Storage and Vascular Dysfunction in Salt-Sensitive SubjectsNovelty and Significance. Hypertension. 2016;68(1):195-203.
  9. Stamler J. The INTERSALT Study: background, methods, findings, and implications. Am. J. Clin. Nutr. 1997;65(2):626S-642S.
  10. Denton D., Weisinger R., Mundy N.I., Wickings E.J., Dixson A., Moisson P., Pingard A.M., Shade R., Carey D., Ardaillou R. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1995;1(10):1009-1016.
  11. Na E.S., Morris M.J., Johnson R.F., Beltz T.G., Johnson A.K. The neural substrates of enhanced salt appetite after repeated sodium depletions. Brain Res. 2007;1171:104-110.
  12. Moore T.J., Conlin P.R., Ard J., Svetkey L.P. DASH (Dietary Approaches to Stop Hypertension) Diet is effective treatment for stage 1 isolated systolic hypertension. Hypertension. 2001;38(2):155-158.
  13. Гайтон А.К., Холл Д.Э. Медицинская физиология. М.,2008.
  14. Арутюнов Г.П. Патофизиологические процессы в почках у больных ХСН. Журнал сердечная недостаточность. 2008;9(5):234-249.
  15. Guyton A. C., Coleman T. G., Granger H. J. Circulation: overall regulation. Annual review of physiology. 1972;34(1):13-44.
  16. Шмидт Р., Тевс Г. Физиология человека. М., 1996;2.
  17. Hancock A.M., Witonsky D.B., Ehler E., Alkorta-Aranburu G., Beall C., Gebremedhin A., Sukernik R., Utermann G., Pritchard J., Coop G., Di Rienzo A. Human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc. Natl. Acad. Sci. 2010;107(2):8924-8930.
  18. Yamamoto K., Takeda Y., Yamashita S., Sugiura T., Wakamatsu Y., Fukuda M., Ohte N., Dohi Y., Kimura G. Renal dysfunction impairs circadian variation of endothelial function in patients with essential hypertension. J. Am. Soc. Hypertens. JASH. 2010;4(6):265-271.
  19. Simon A. C. Safar, M. E., Levenson, J. A. An evaluation of large arteries compliance in man. American Journal of Physiology-Heart and Circulatory Physiology. 1979;237(5):H550-H554.
  20. Martínez-Maldonado M. Hypertension in end-stage renal disease. Kidney Int. 1998;54:S67-S72.
  21. Pradervand S. Wang Q., Burnier M., Beermann F., Horisberger J.D., Hummler E., Rossier B.C. A mouse model for liddle’s syndrome. J. Am. Soc. Nephrol. 1999;10(12):2527-2533.
  22. Botero-Velez M., Curtis J.J., Warnock D.G. Liddle’s syndrome revisited - A disorder of sodium reabsorption in the distal tubule. N. Engl. J. Med. 1994;330(3):178-181.
  23. Pepersack T., Allegre S., Jeunemaitre X., Leeman M., Praet J.P. Liddle syndrome phenotype in an octogenarian. J. Clin. Hypertens. 2015; 17(1):59-60.
  24. Barker, D. J., Osmond, C., Winter, P. D., Margetts B., Simmonds S.J. Weight in infancy and death from ischaemic heart disease. The Lancet. 1989;334(8663):577-580.
  25. Lackland D.T., Bendall H.E., Osmond C., Egan B.M., Barker D.J. Low birth weights contribute to the high rates of early-onset chronic renal failure in the southeastern United States. Arch. Intern. Med. 2000;160(10):1472.
  26. Preeclampsia and the Risk of End-Stage Renal Disease | NEJM [Electronic resource]. URL: http://www.nejm.org/doi/full/10.1056/NEJMoa0706790 (accessed: 14.02.2018).
  27. Silveira P.P., Portella A.K., Goldani M.Z., Barbieri M.A. Developmental origins of health and disease (DOHaD). J. Pediatr. (Rio J.). 2007;83(6):494- 504.
  28. Kerkhof G.F., Willemsen R.H., Leunissen R.W., Breukhoven P.E., Hokken-Koelega A.C. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. J. Clin. Endocrinol. Metab. 2012;97(12): 4498-4506.
  29. Brenner B.M., Garcia D.L., Anderson S. Glomeruli and blood pressure: Less of one, more the other?Am. J. Hypertens. 1988;1(4):335-347.
  30. Weder A.B., Schork N.J. Adaptation, allometry, and hypertension. Hypertension. 1994;24(2):145-156.
  31. Bertram J.F., Douglas-Denton R.N., Diouf B., Hughson M.D., Hoy W.E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 2011;26(9):1529-1533.
  32. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure [Electronic resource]. URL: https:// elibrary.ru/item.asp?id=13590732 (accessed: 14.02.2018).
  33. Padberg J.-S., Wiesinger A., di Marco G.S., Reuter S., Grabner A., Kentrup D., Lukasz A., Oberleithner H., Pavenstädt H., Brand M., Kümpers P. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis. 2014;234(2):335-343.
  34. Engberink R.H.G.O., Rorije N.M., Homan van der Heide J.J., van den Born B., Vogt L. Role of the vascular wall in sodium homeostasis and salt sensitivity. J. Am. Soc. Nephrol. 2014. P. ASN.2014050430.
  35. Арутюнов Г.П., Оганезова Л.Г. Проблема гиперфильтрации в клинической практике. Клиническая нефрология. 2009;1:29-40.
  36. Арутюнов Г.П., Оганезова Л.Г., Драгунов Д.О. Взаимосвязь периода полувыведения петлевого диуретика, выраженности натрийуреза и показателей центральной гемодинамики у больных ХСН (пилотное исследование). Журнал сердечная недостаточность. 2012;4:13.
  37. Арутюнов Г.П., Драгунов Д.О., Соколова А.В. Взаимосвязь между натрийурезом, показателями центральной гемодинамики и плазменной концентрацией ангиотензина II. Клиническая нефрология. 2013;6:24-28.
  38. Арутюнов Г.П. Влияние диуретиков с различным периодом полувыведения на изменение натрийурезаи показатели центральной гемодинамики у пациентов с гипертонической болезнью,осложненной хронической сердечной недостаточностью. Сердце журнал для практикующих врачей. 13;2(76):2014.
  39. Kempner W. Treatment of hypertensive vascular disease with rice diet. Am. J. Med. 1948;4(4):545-577.
  40. Weinberger, Myron H. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27(3):481-490.
  41. Kerstens M.N. et al. Salt Loading Affects Cortisol Metabolism in Normotensive Subjects: Relationships with Salt Sensitivity. J. Clin. Endocrinol. Metab. 2003;88(9):4180-4185.
  42. Franklin S.S. et al. Predominance of isolated systolic hypertension among Middle-Aged and elderly US hypertensives: analysis based on national health and nutrition examination survey (NHANES). Hypertension. 2001; 37(3):869-874.
  43. Alderman M.H., Cohen H., Madhavan S. Dietary sodium intake and mortality: the National Health and Nutrition Examination Survey (NHANES I). The Lancet. 1998;351(9105):781-785.
  44. He J. Dietary sodium Intake and subsequent risk of cardiovascular disease in overweight Adults. JAMA. 1999;282(21):2027.
  45. Hammer F., Stewart P.M. Cortisol metabolism in hypertension. Best Pract. Res. Clin. Endocrinol. Metab. 2006;20(3):337-353.
  46. Morimoto A. Uzu, T., Fujii, T., Nishimura M., Kuroda S., Nakamura S., Inenaga T., Kimura G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. The Lancet. 350(9093):1734-1737.
  47. Dahl L.K., Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ. Res. 1975;36(6):692-696.
  48. Curtis J.J., Luke R.G., Dustan H.P. Remission of essential hypertension after renal transplantation. N. Engl. J. Med. 1983;309(17):1009-1015.
  49. Müller S., Quast T., Schröder A., Hucke S., Klotz L., Jantsch J., Gerzer R., Hemmersbach R., Kolanus W. Salt-Dependent ^emotaxis of macrophages. PLoS ONE. 2013;8(9).
  50. Suckling R.J., He F.J., Markandu N.D., MacGregor G.A. Dietary salt influences postprandial plasma sodium concentration and systolic blood
  51. Titze J. Sodium balance is not just a renal affair. Curr. Opin. Nephrol. Hypertens. 2014;23(2):101-105.
  52. Titze J., Machnik A. Sodium sensing in the interstitium and relationship to hypertension. Curr. Opin. Nephrol. Hypertens. 2010;19(4):385-392.
  53. Ганс Селье. Профилактика некрозов сердца химическими средствами.
  54. Арутюнов Г. П. Влияние уровня общего натрия, депонированного в миокарде, на его жесткость. Терапевтический Архив. 2017;89(1):32-37.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies