Epigenetic regulation of renal fibrosis in diabetic nephropathy: focus on histone modifications


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

ONE OF THE MOST COMMON CAUSES OF THE DEVELOPMENT OF THE END-STAGE RENAL DISEASE IS DIABETIC NEPHROPATHY (DNP). RENAL FIBROSIS, CHARACTERIZED BY THE ACCUMULATION OF EXTRACELLULAR MATRIX (ECM) PROTEINS IN THE GLOMERULAR BASEMENT MEMBRANE AND TUBULOINTERSTITIAL TISSUES, IS THE TERMINAL MANIFESTATION OF DPN. THE SIGNALING PATHWAY OF TGF-ß (TRANSFORMING GROWTH FACTOR BETA) TRIGGERS AN EPITHELIAL-MESENCHYMAL TRANSITION (EMT), WHICH PLAYS A KEY ROLE IN THE ACCUMULATION OF ECM PROTEINS IN DPN. THE STUDIES SHOW THAT DNP CONTINUES TO PROGRESS DESPITE THE GLYCEMIC CONTROL. THIS PHENOMENON IS CALLED "METABOLIC MEMORY" AND MEANS THAT EPIGENETIC FACTORS, IN PARTICULAR HISTONE MODIFICATIONS, ALTER THE TGF-ß,-INDUCED OF RENAL FIBROSIS GENE AND ECM PROTEIN EXPRESSION, AND ALSO PARTICIPATE IN RENAL FIBROSIS DUE TO CAPABILITY TO REGULATE THE EMT PROCESS CAUSED BY TGF-ß SIGNALING. IN THIS REGARD, RESEARCHERS ARE CURRENTLY MAKING EFFORTS TO DEVELOP AGENTS AFFECTING THE HISTONE MODIFICATIONS, IN ORDER TO DELAY, STOP, OR EVEN REVERSE THE DEVELOPMENT OF DPN. THIS REVIEW PRESENTS THE RESULTS OF THE MOST RECENT STUDIES ON THE REGULATION OF HISTONE MODIFICATIONS INVOLVED IN THE PATHOGENESIS OF DPN.

Full Text

Restricted Access

About the authors

K. A Aitbaev

Research Institute of Molecular Biology and Medicine under the National Center for Cardiology and Therapy of the Ministry of Health of the Kyrgyz Republic

Doctor of Medical Sciences, Professor, Head of the Laboratory of Pathological Physiology of the Research Institute of Molecular Biology and Medicine under the NCCT of the Ministry of Health of the Kyrgyz Republic

I. T Murkamilov

I.K. Akhunbaev Kyrgyz State Medical Academy; Acad. Mirsaid Mirrakhimov National Center for Cardiology and Therapy under the Ministry of Health of the Kyrgyz Republic

Email: murkamilov.i@mail.ru
PhD in Medical Sciences, Nephrologist of the 1-st qualification category, Teaching Assistant at the Department of Faculty Therapy

Zh. A Murkamilova

Center for Family Medicine № 7; Bishkek

Nephrologist

V. V Fomin

FSBEI HE "Sechenov First Moscow State Medical University"

Doctor of Medical Sciences, Professor, Head of the Department of Faculty Therapy № 1

References

  1. Xue J.L., Ma J.Z., Louis Т.А., Collins A.J. Forecast of the number of patients with end-stage renal disease in the United States to the year 2010. J. Am. Soc. Nephrol. 2001; 12: 2753-2758.
  2. Hewitson T.D. Renal tubulointerstitial fibrosis: Common but never simple. Am. J. Physiol. Renal. Physiol. 2009; 296: F1239-1244. doi: 10.1152/ajprenal.90521.2008.
  3. Remuzzi G., Benigni A., Remuzzi A. Mechanisms ofprogression and regression of renal lesions of chronic nephropathies and diabetes. J. Clin. Invest. 2006; 116: 288-296. doi: 10.1172/JCI27699.
  4. Gagliardini E., Benigni A. Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine Growth Factor Rev. 2006; 17-89-96.
  5. Lysaght M.J. Maintenance dialysis population dynamics: Current trends and long-term implications. J. Am. Soc. Nephrol. 2002; 13: S37- S40.
  6. Kanwar Y.S., Sun L., Xie P., Sun L., Xie P., Liu F. Y., Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Ann. Rev. Pathol. 2011; 6: 395-423. doi: 10.1146/annurev.pathol.4.110807.092150.
  7. Schena F.P., Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol. 2005; 16: S30-S33.PMID: 15938030.
  8. Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Fur. J. Clin. Invest. 2004; 34: 785-796. doi: 10.1111/j.1365-2362.2004.01429.x.
  9. Ban C.R., Twigg S.M. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vase. Health Risk Management. 2008; 4: 575-596. PMID: 18827908.
  10. Villeneuve L.M., Reddy MA., Natarajan R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol. 2011; 38: 451- 459. doi: 10.1111/j.1440-1681.2011.05497.x.
  11. Villeneuve L.M., Natarajan R. Epigenetic mechanisms. Contributions to Nephrology. 2011; 170: 57-65. doi: 10.1159/000324944.
  12. Hu C., Sun L., Xiao L., Han Y., Fu X., Xiong X., Kanwar Y.S. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr. Med. Chem. 2015; 22(24): 2858-2870. PMCID: PMC4863711.
  13. Tsilibary E.C. Microvascular basement membranes in diabetes mellitus. J. Pathol. 2003; 200(4): 537-546. Doi: https.//doi.org/10.1002/path.1439
  14. Liu Y., Wang Z., Yin W., Li Q., Cai M., Zhang C., Zu X. Severe insulin resistance and moderate glomerulosclerosis in a minipig model induced by high-fat/high-sucrose/ high-cholesteroldiet. Exp. Anim. 2007; 56(l): ll-20. Doi: https.//doi.org/10.1538/expanim.56.ll
  15. Olgemöller В., Schleicher Е. Alterations of glomerular matrix proteins in the pathogenesis of diabetic nephropathy. Clin. Invest. 1993; 71(5): S13-S19. Doi.https:// doi.org/10.1007/BF00180071
  16. Stokes M.B., Holler S., Cui Y., Hudkins K.L., Eitner F., Fogo A., Alpers C.E. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Internat. 2000; 57(2): 487-498. Doi: 0.1046/j.l523-1755.2000.00868.x 2-s2.0-0033934431
  17. Schaefer L., Raslik I., Gröne HJ., Schönherr E.L.K.E., Macakova K., Ugorcakova J., Kresse H. Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin. The FASEBJ. 2001; 15(3): 559-561. doi: 10.1096/fj.00-0493fje.
  18. Matheson A., Willcox M.D., Flanagan J., Walsh B.J. Urinary biomarkers involved in type 2 diabetes: a review. Diabetes/metabolism Res. Rev. 2010; 26(3): 150-171. Doi: https.//doi.org/10.1002/dmrr.l068.
  19. Tashiro K., Koyanagi I., Ohara I., Ito T., Saitoh A., Horikoshi S., Tomino Y. Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 2004; 18: 3: 206-210. doi: 10.1002/ jela. 20024.
  20. Granier C., Makni K, Molina L., Makni K, Molina L., Jardin-Watelet B., Ayadi H., Jarraya F. Gene and protein markers of diabetic nephropathy. Nephrol. Dial. Transplant. 2008; 23: 792-799. doi: 10.1093/ndt/gfm834.
  21. Hills C.E., Bland R., Bennett J., Ronco P.M., Squires P.E. TGF-ß 1 mediates glucose-evoked up-regulation of connexin-43cell-to-cellcommunication in HCD-cells. Cellular Physiol. Bioch. 2009; 24(3-4): 177-186. Doi: http.//dx.doi.org/10.1159/000233244
  22. Böttinger E.P., Bitzer M. TGF-ß signaling in renal disease. J. Am. Soc. Nephrol. 2002; 13(10): 2600-2610. Doi: 2-s2.0-0036786834 10.1097/01. ASN.0000033611.79556.
  23. Hills C.E., Squires P.E. TGF-ß 1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am. J. Nephrol. 2010; 31(l): 68-74. doi: 10.1159/000256659.
  24. Veeneman J.M., De Jong P.E., Huisman R.M., Reijngoud D.J., Nair K.S. Why is muscle protein synthesis, but not whole body protein synthesis, reduced in CRF patients?. Am. J. Physiol.-Endocrinol. Metabolism. 2001; 280(1): 197-198. doi: 10.1152/ajpendo.2001.280.1.E197.
  25. Sharma K., Ziyadeh F.N., Alzahabi B., McGowan TA., Kapoor S., Kumik B.R., Weisberg L.S. Increased renal production of transforming growth factor-ßl in patients with type II diabetes. Diabetes. 1997; 46(5): 854-859. PMID: 9133555.
  26. Lee H.S. Pathogenic role of TGF-ß in the progression of podocyte diseases. Histol. Histopathol. 2011; 26(1): 107-16. doi: 10.14670/HH-26.107.
  27. Lee H.S., Song C.Y. Differential role of mesangial cells and podocytes in TGF-beta-induced mesangial matrix synthesis in chronic glomerular disease. Histology and histopathology. 2009; 24(7): 901-908. doi: 10.14670/HH-24.901.
  28. Dai C., Liu Y. Hepatocyte growth factor antagonizes the profibrotic action of TGF-ß2 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J. Am. Soc. Nephrol. 2004; 15(6): 1402-1412. doi: 10.1097/01ASN.0000130568.53923.FD.
  29. Hills C.E., Al-Rasheed N., Al-Rasheed N., Willars G.B., Brunskill N.J. C-peptide reverses TGF-ß 1-induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy. Am. J. Physiol.-Renal. Physiol.2009; 296(3): 614-621. doi: 10.1152/ajprenal.90500.2008.
  30. Tikellis C., Cooper M.E., Twigg S.M., Bums W.C., Tolcos M. Connective tissue growth factor is up-regulated in the diabetic retina: amelioration by angiotensin-converting enzyme inhibition. Endocrinol. 2004; 145(2): 860-866. doi: 10.1210/en.2003-0967.
  31. Roestenberg P., van Nieuwenhoven FA., Joies J.A., Trischberger C., Martens P.P., Oliver N., Goldschmeding R. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am. J.Physiol.-Renal. Physiol. 2006; 290(6): 1344-1354. doi: 10.1152/ajprenal. 00174.2005.
  32. Umezono T., Toyoda M., Kato M., Miyauchi M., Kimura M., Maruyama M., Suzuki D. Glomerular expression of CTGF, TGF-beta 1 and type IV collagen in diabetic nephropathy. J. Nephrol. 2006; 19(6): 751-757. PMID: 17173248.
  33. Weston B.S., Wahab N.A., Mason R.M. CTGF Mediates TGF-ß-Induced Fibronectin Matrix Deposition by Upregulating Active a5ßl Integrin in Human Mesangial Cells. J. Am. Soc. Nephrol. 2003; 14(3): 601-610. doi: 10.1097/01.ASN.0000051600.53134.B9.
  34. Kok H.M., Falke L.L., Goldschmeding R., Nguyen T.Q. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat. Rev. Nephrol. 2014; 10(12): 700-711. doi: 10.1038/nmeph.2014.184.
  35. Tampe D., Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nature Reviews Nephrology. 2014; 10(4): 226-237. doi: 10.1038/nmeph.2014.14.
  36. Loeffler I., Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 2015; 4(4): 631- 652. doi: 10.3390/cells4040631.
  37. Galichon P., Hertig A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis & tissue repair. 2011; 4(1): 11. doi: 10.1186/1755-1536-4-11.
  38. Fragiadaki M., Mason R.M. Epithelial-mesenchymal transition in renal fibrosis- evidence for and against. Int. J. Exp. pathol. 2011; 92(3): 143-150. doi: 10.1111/j.1365-2613.2011.00775.x
  39. Zeisberg M., Hanai J. I., Sugimoto H., Mammoto T., Charytan D., Strutz F., & Kalluri R. BMP-7 counteracts TGF-ß 1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003; 9(7): 964- 968. doi: 10.1038/nm888.
  40. For the Diabetes T.W.T., Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA: J. Am. Med. Association. 2002; 287(19): 2563. PMCID: PMC2622728.
  41. For the Diabetes T.W.T., Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA J. Am. Med. Association. 2003; 290(16): 2159-2167. doi: 10.1001/jama.290.16.2159.
  42. Schemthaner G. Diabetes and cardiovascular disease: is intensive glucose control beneficial or deadly? Lessons from ACCORD, ADVANCE, VADT, UKPDS, PROactive, and NICE-SUGAR. Wiener Medizinische Wochenschrift. 2010; 160(1- 2): 8-19. doi: 10.1007/sl0354-010-0748-7.
  43. Li S., Reddy MA., Cai Q., Meng L., Yuan H., Lanting L., Natarajan R. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes. 2006; 55(9): 2611-2619. doi: 10.2337/db06-0164.
  44. Kowluru RA., Abbas S.N., Odenbach S. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J. Diab. Complicat. 2004; 18(5): 282-288. doi: 10.1016/j.jdiacomp.2004.03.002.
  45. Hammes H.P., Klinzing I., Wiegand S., Bretzel R.G., Cohen A.M., Federlin K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investigative ophthalmology & visual science. 1993; 34(6): 2092-2096. Doi: http.//iovs.arvojoumals.org/pdfiaccess.ashx?url=/data/joumals/iovs/933399/on05/02/2018.
  46. Waddington C.H. The epigenotype. Int. J. Epidemiol.2011; 41(1): 10-13. Doi: https.//doi.org/10.1093/ije/dyrl84.
  47. Franks P.W., Nettleton JA. Invited commentary: gene lifestyle interactions and complex disease traits-inferring cause and effect from observational data, sine qua non. Am. J. Epidemiol. 2010; 172(9): 992- 997. doi: 10.1093/aje/kwq280.
  48. Wing M.R., Ramezani A., Gill H.S., Devaney J. M., Raj D.S. Epigenetics of progression of chronic kidney disease: fact or fantasy?. Seminars in nephrology. Elsevier. 2013; 33: 4: 363-374. doi: 10.1016/j.semnephrol.2013.05.008.
  49. Reddy MA., Park J.T., Natarajan R. Epigenetic modifications in the pathogenesis of diabetic nephropathy. Seminars in nephrology. Elsevier. 2013; 33(4): 341-353. doi: 10.1016/j.semnephrol.2013.05.006.
  50. Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128(4): 693- 705. doi: 10.1016/j.cell.2007.02.005.
  51. Bonasio R., Tu S., Reinberg D. Molecular signals of epigenetic states. Science. 2010; 330(6004): 612-616. doi: 10.1126/science.1191078.
  52. Zhou V W., Goren A., Bernstein B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genetics. 2011; 12(1): 7-18. doi: 10.1038/nrg2905.
  53. Villeneuve L.M., Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am. J. Physiol.-Renal Physiol. 2010; 299(1): F14-F25. doi: 10.1152/ajprenal.00200.2010.
  54. Murr R. Interplay between different epigenetic modifications and mechanisms. Advances in genetics. Acad. Press. 2010; 70: 101-141. doi: 10.1016/B978-0-12-380866-0.60005-8.
  55. Reddy MA., Natarajan R. Epigenetics in diabetic kidney disease. Journal of the Am. Soc. Nephrol. 2011; 22(12): 2182-2185. doi: 10.1681/ASN.2011060629.
  56. Yang X.J., Seto E.Y. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007; 26(37): 5310-5318. doi: 10.1038/sj.onc.1210599.
  57. De Ruijter A.J.M., Van Gennip A.H., Caron H.N., Kemp S., Van Kuilenburg A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003; 370(3): 737- 749. doi: 10.1042/BJ20021321.
  58. Jorgensen S., Schotta G., Sorensen C.S. Histone H4 lysine 20 méthylation: key player in epigenetic regulation of genomic integrity. Nucl. Acids Res. 2013; 41(5): 2797-2806. doi: 10.1093/nar/gkt012.
  59. Sun G., Cui W.P., Guo Q.Y., Miao L.N. Histone lysine méthylation in diabetic nephropathy. J. Diab. Res. 2014; 2014: 6541-6548. doi: 10.1155/2014/654148.
  60. Wegner M., Neddermann D., Piorunska-Stolzmann M., Jagodzinski P.P. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes research and clinical practice. 2014; 105(2): 164-175. doi: 10.1016/j.diabres.2014.03.019.
  61. Tonna S., El-Osta A., Cooper M.E., Tikellis C. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nat. Rev. Nephrol. 2010; 6: 6: 332-341. doi: 10.1038/nmeph.2010.55.
  62. Thomas M.C. Epigenetic mechanisms in diabetic kidney disease. Curr. Diab. Rep. 2016; 16: 31. doi: 10.1007/s11892-016-0723-9.
  63. Ling C., Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009; 58(12): 2718-2725. doi: 10.2337/db09-1003.
  64. Chakrabarti S.K., Francis J., Ziesmann S.M., Garmey J.C., Mirmira R.G. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic ß cells. J. Biol. Chem. 2003; 278(26): 23617-23623. doi: 10.1074/jbc.M303423200.
  65. Reddy M.A., Natarajan R. EpigeneticD: 10.1093/cvr/cvr024.
  66. Miao F., Gonzalo I. G., Lanting L., Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 2004; 279(17): 18091-18097. doi: 10.1074/jbc.M311786200.
  67. Yuan H., Reddy M.A., Sun G., Lanting L., Wang M., Kato M., Natarajan R. Involvement ofрЗОО/CBP and epigenetic histone acetylation in TGF-ß -mediated gene transcription in mesangial cells. Am. J. Physiol.-Renal Physiol. 2012; 304(5): F601- F613. doi: 10.1152/ajprenal.00523.2012.
  68. Sun G., Reddy MA., Yuan H., Lanting L., Kato M., Natarajan R. Epigenetic histone méthylation modulates flbrotic gene expression. J. Am. Soc. Nephrol. 2010; ASN. 2010060633. doi: 10.1681/ASN.2010060633.
  69. Wang Y, Luo M., Wu H., Kong L., Xin Y., Miao L. Novel curcumin analog C66 prevents diabetic nephropathy via INK pathway with the involvement of рЗОО/CBP-mediated histone acétylation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015; 1852( l): 34-46. doi: 10.1016/j.bbadis.2014.11.006.
  70. Kolset S.O., Reinholt F.P., Jenssen T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem. 2012; 60(12/976-986. doi: 10.1369/0022155412465073.
  71. Brosius F.C. New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy. Rev. Endocrine Metabolic Disorders. 2008; 9(4): 245-254. doi: 10.1007/s1154-008-9100-6.
  72. Diamond-Stanic M.K, You Y.H., Sharma K. Sugar, sex, and TGF-ß in diabetic nephropathy. Seminars in nephrology. Elsevier. 2012; 32(3): 261-268. doi: 10.1016/j.semnephrol.2012.04.005
  73. Ghosh A.K., Bhattacharyya S., Lafyatis R., Farina G., Yu J., Thimmapaya B., Varga J. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-ß: epigenetic feed-forward amplification of fibrosis. J. Investig. Dermatol. 2013; 133(5): 1302-1310. doi: 10.1038/jid.2012.479.
  74. Kanamaru Y., Nakao A., Tanaka Y., Inagaki Y, Ushio H., Shirato L,.. & Tomino Y. Involvement of p300 in TGF-ß/Smad-Pathway-Mediated a2 (I) Collagen Expression in Mouse Mesangial Cells. Nephron Exp. Nephrol. 2003; 95( 1): е36-е42.
  75. Fang M., Kong X., Li P., Fang F., Wu X., Bai H., Xu Y. RFXB and its splice variant RFXBSV mediate the antagonism between IFNy and TGFß on COL1A2 transcription in vascular smooth muscle cells. Nucl.Ac. Res. 2009; 37(13): 4393- 4406. doi: 10.1093/nar/gkp398.
  76. Xu H., WuX., Qin H., Tian W., ChenJ., Sun L., Xu Y. Myocardin-related transcription factor A epigenetically regulates renal fibrosis in diabetic nephropathy. Journal of the Am. Soc. Nephrol. 2015; 26(7): 1648-1660. doi: 10.1681/ASN.2014070678.
  77. Yuan H., Reddy M.A., Deshpande S., Jia Y, Park J.T., Lanting L.L., Natarajan R. Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. Antiox. Redox. Signal. 2016; 24(7): 361-375. doi: 10.1089/ars.2015.6372.
  78. Lee H.B., Noh H., Seo J.Y., Yu M.R., Ha H. Histone deacetylase inhibitors: a novel class of therapeutic agents in diabetic nephropathy. Kidney Intern. 2007; 72: S61-S66. doi: 10.1038/sj.ki.5002388.
  79. Wang X., Liu J., Then J., Zhang C., Wan Q., Liu G., Xu H. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Intern. 2014; 86(4): 712- 725.
  80. Yoshikawa M., Hishikawa K, Marumo T., & Fujita T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-ßl in human renal epithelial cells. J. Am. Soc. Nephrol. 2007; 18(l): 58-65. doi: 10.1681/ASN.2005111187.
  81. Pang M., Kothapally J., Mao H., Tolbert E., Ponnusamy M., Chin Y.E., & Zhuang S. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am. J. Physiol.-Renal Physiol. 2009; 297(4): F996-F1005. doi: 10.1152/ajprenal.00282.2009.
  82. Noh H., Oh E.Y., Seo J.Y., Yu M.R., Kim Y.O., Ha H., Lee H.B. Histone deacetylase-2 is a key regulator of diabetes-and transforming growth factor-ß 1-induced renal injury. Am. J. Physiol.-Renal Physiol. 2009; 297(3): F729-F739. doi: 10.1152/ajprenal.00086.2009.
  83. Liu N., He S., Ma L., Ponnusamy M., Tang J., Tolbert E., Zhuang S. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PloSOne. 2013; 8(l): e54001. doi: 10.1371/joumal.pone.0054001.
  84. McDonald O.G., Wu H., Timp W., Doi A., Feinberg A.P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat. Struct. Mol. Biol. 2011; 18(8): 867- 874. doi: 10.1038/nsmb.2084.
  85. Chen S., Feng B., George B., Chakrabarti R., Chen M., Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am. J. Physiol. -Endocrinol. Metabol. 2009; 298(1): E127-E137. Doi: https.//doi.org/10.1152/ajpendo.00432.2009
  86. Yun J.M., Jialal I., Devaraj S. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J. Nutrit. Biochem. 2011; 22(5): 450-458. Doi: https://doi.org/10.1016/j.jnutbio.2010.03.014
  87. Ma J., Phillips L., Wang Y., Dai T., LaPage J., Natarajan R., Adler S.G. Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC. BMC complementary and alternative medicine. 2010; 10(1): 67. Doi: https.//doi.org/10.1186/1472-6882-10-67
  88. Khan S., Jena G., Tikoo K. Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Exp. Molec. Pathol. 2015; 98(2): 230-239. Doi: https.//doi.org/10.1016/j.yexmp.2015.01.003
  89. Qi H., Jing Z., Xiaolin W., Changwu X., Xiaorong H., Jian Y., Hong J. Histone demethylase JMJD2A inhibition attenuates neointimalhyperplasia in the carotid arteries of balloon-injured diabetic rats via transcriptional silencing: inflammatory gene expression in vascular smooth muscle cells. Cell. Physiol. Biochem. 2015; 37(2): 719- 734. Doi: https.//doi.org/10.1159/000430390

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies