Renal status, blood d-dimer and procalcitonin levels in COVID-19


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. assessment of the renal status, d-dimer and procalcitonin levels in patients with the novel coronavirus disease (COVID-19). material and methods: the study included 123 patients diagnosed with covid-19 and pneumonia. the indices of the estimated glomerular filtration rate (egfr) were considered according to the ckd-epi (Chronic kidney disease epidemiology Collaboration) and mdrd (Modification of Diet in renal Disease) formulas. The creatinine clearan the concentration of creatinine, d-dimer, and procalcitonin levels were determined. results. the median and interquartile egfr values according to the ckd-epi and mdrd formulas were 80.o (68.0; 95.0) and 78.o (67.0; 94.0) ml/min, respectively. a decrease in gfr <60 ml/min according to the ckd-epi, mdrd and Cockcroft-gault formulas was found in 14, ii and 12 patients with covid-19, respectively. the creatinine clearance according to the Cockcroft-gault formula was 85.o (68.0; 102.0) ml/min. proteinuria was noted in 48 (39.o%) patients with covid-19. a negative relationship between the blood procalcitonin level and gfr calculated using the mdrd formula (r=-0.307; p<0.05) and creatinine clearance using the Cockcroft-gault method (r=-0.313; p<0.05) was found. a direct dependence of proteinuria on the blood d-dimer (r=0.437; p<0.05) and procalcitonin (r=0.409; p<0.05) concentration was shown. the blood procalcitonin level positively correlated with the urea concentration (r=0.448; p<0.05) and blood residual nitrogen (r=0.399; p<0.05). Conclusion. a slight decrease in renal function was detected in 26.8% of patients with covid-19, a moderate decrease - in 4.i%, a significant decrease - in 3.2%, and renal failure - in 4.i%. proteinuria was recorded in 39.o% of patients with covid-19. an d-dimer concentration was found in 47.9% of patients with covid-19, and increase in the procalcitonin level - in 49.5%. the laboratory predictor of deterioration in renal function in patients with covid-19 was the blood procalcitonin level. the risk of developing proteinuria was closely related to the blood D-dimer concentration

Full Text

Restricted Access

About the authors

I. T Murkamilov

K. Akhunbaev Kyrgyz State Medical Academy; Kyrgyz-Russian Slavic University

Email: murkamilov.i@mail.ru
Cand. Sci. (Med.), Nephrologist, Deputy Associate Professor at the Department of Faculty Therapy Bishkek, Kyrgyzstan

K. A Aitbaev

Scientific Research Institute of Molecular Biology and Medicine

Email: aitbaev@yahoo.com
Dr.Sci. (Med.), Professor, Head of the Laboratory of Pathological Physiology Bishkek, Kyrgyzstan

V. V Fomin

Sechenov First Moscow State Medical University

Email: fomin_vic@mail.ru
Dr.Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Faculty Therapy № 1, Vice-Rector for Clinical Work and Postgraduate Professional Education Moscow, Russia

I. O Kudaibergenova

I.K. Akhunbaev Kyrgyz State Medical Academy

Email: k_i_o2403@mail.ru
Dr.Sci. (Med.), Professor, Rector Bishkek, Kyrgyzstan

T. I Maanaev

National Hospital of the Ministry of Health of the Kyrgyz Republic

Cand. Sci. (Med.), Chief Physician Bishkek, Kyrgyzstan

Zh. A Murkamilova

Kyrgyz-Russian Slavic University

Email: murkamilovazh.t@mail.ru
Correspondence Post-Graduate Student at the Department of Therapy № 2 in the specialty “General Medicine” Bishkek, Kyrgyzstan

F. A Yusupov

Osh State University

Email: furcat_y@mail.ru
Dr.Sci. (Med.), Professor, Head of the Department of Neurology, Neurosurgery and Psychiatry, Faculty of Medicine, Osh State University; Chief Neurologist of the Southern Region of Kyrgyzstan Osh, Kyrgyzstan

References

  1. Котенко О.Н., Васина Н.В., Виноградов В.Е. Организация работы Московской городской нефрологической службы в период пандемии новой коронавирусной инфекции COVID-19. Клинич. нефрология. 2020;2:8-9
  2. Литвинов А.С., Савин А.В., Кухтина А.А., Ситовская Д.А. Клиникоморфологические параллели повреждения легких и почек при COVID-19. Нефрология. 2020;24(5):97-107
  3. Ильченко Л.Ю., Никитин И.Г., Федоров И.Г. COVID-19 и поражение печени. Архивъ внутренней медицины. 2020;10(3):188-97
  4. Liao S.C., Shao S.C., Chen Y.T., et al. Incidence and mortality of pulmonary embolism in COVID-19: a systematic review and meta-analysis. Critical Care. 2020;24:1:1-5. https://doi.org/10.1186/s13054-020-03175-z
  5. Гусев Е.И., Мартынов М.Ю., Бойко А.Н. и др. Новая коронавирусная инфекция (COVID-19) и поражение нервной системы: механизмы неврологических расстройств, клинические проявления, организация неврологической помощи. Журнал неврологии и психиатрии им. С. С. Корсакова. 2020; 120(6):7-16.
  6. Ивашкин В.Т., Шептулин А.А., Зольникова О.Ю. и др. Новая коронавирусная инфекция (COVID-19) и система органов пищеварения. Рос. журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(3):7-13
  7. Levey A.S., Stevens L.A., Schmid C.H., et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009;150:604-12.
  8. Levey A.S., Bosch J.P, Lewis J.B., et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999;130(6):461-70. https://doi.org/10.7326/0003-4819-130-6-199903160-00002
  9. Cockcroft D.W., Gault M.H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41. https://doi.org/10.1159/ 000180580
  10. Drucker D.J. Coronavirus infections and type 2 diabetes - shared pathways with therapeutic implications. Endocr Rev. 2020;41(3):pii: bnaa011. https:// doi.org/10.1210/endrev/bnaa011
  11. Grasselli G, Zangrillo A., Zanella A., et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020 Apr 6. https://doi.org/10.1001/ jama.2020.5394. [Epub ahead of print]
  12. Макарова М.А., Авдеев С.Н., Чучалин А.Г. Гипоксемия как потенциальный фактор развития эндотелиальной дисфункции и артериальной ригидности у больных хронической обструктивной болезнью легких. Пульмонология. 2013;(3):36-40.
  13. Насонов Е.Л. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин-6. Научнопрактическая ревматология. 2020;58(3):245-61.
  14. Кузьмин О.Б. Хроническая болезнь почек: механизмы развития и прогрессирования гипоксического гломерулосклероза и тубулоинтерстициального фиброза. Нефрология. 2015;19(4):6-16
  15. Dolhnikoff M., Nunes Duarte-Neto A., Aparecida de Almeida Monteiro R. et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-J. Thromb. Haemost. 2020;18:1517-9. https://doi.org/10.1111/jth.14844
  16. Ackermann M., Verleden S.E., Kuehnel M., et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020;(383):120-8. https://doi.org/10.1056/NEJMoa2 015 432
  17. Lax S.F., Skok K., Zechner P., et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series Ann. Intern. Med. 2020; https://doi.org/10.7326/M20-2566.
  18. ACC/Chinese Cardiovascular Association COVID-19 Webinar 1. https://www. youtube.com
  19. Thachil J., Tang N., Gando S., et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thrombos. Haemostas. 2020;18:5:1023-6. https://doi.org/10.1111/jth.14810
  20. OBE B.H., Retter A., McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19. 2020.
  21. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-62. https://doi.org/10.1016/S0140-6736(20)30566-3.
  22. Guan W., Ni Z., Yu Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:18:1708-20. https://doi. org/10.1056/NEJMoa2002032.
  23. Second WHO Model List of Essential In Vitro Diagnostics. WHO/MVP/ EMP/2019.05.C.50.
  24. Чомахидзе А.М., Алексеева Е.И., Валиева С.И. и др. Определение количественного уровня прокальцитонина и оценка его динамики у пациента с системным вариантом ювенильного ревматоидного артрита. Вопр. соврем. педиатрии. 2008;7(6):167-72.
  25. Вельков В. В. Прокальцитонин и С-реактивный белок в лабораторной диагностике воспалительных процессов. Лаборатория, журнал для врачей. 2008;3:1419
  26. Муркамилов И.Т. Цитокиновый статус при новой коронавирусной болезни (COVID-19). Вестник КРСУ. 2020;20:9:55-65
  27. Cснин Д.Ю., Галькович К.Р., Ренжин А.В. Концентрация прокальцитонина и функциональная активность почек. Жизнеобеспечение при критических состояниях. 2019. С. 102-3
  28. Глыбочко П.В., Фомин В.В., Авдеев С.Н. и др. Клиническая характеристика 1007 больных тяжелой SARS-CoV-2 пневмонией, нуждавшихся в респираторной поддержке. Клин фармакол тер. 2020;29(2):21-9.
  29. Муркамилов И.Т., Айтбаев К.А., Фомин В.В. и др. Функция почек и изменения цитокинового профиля при COVID-19. Клин. нефрология. 2020;3:22-30.
  30. Фролова Н.Ф., Усатюк С.С., Артюхина Л.Ю. и др. Новая коронавирусная инфекция COVID-19 у пациентки после аллотрансплантации почки. Клинич. нефрология. 2020;2:16-20.
  31. Сабиров И.С., Муркамилов И.Т., Фомин В.В. Гепатобилиарная система и новая коронавирусная инфекция (COVID-19). The Scientific Heritage. 2020;49-2(49):49-58.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies