MicroRNAS and their significance in the population of dialysis patients


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Micrornas play a key role in regulating various functions of both healthy and damaged cells; however, their role in the development of cardiovascular diseases and bone mineral disorders in the population of dialysis patients remains poorly understood. there are also no studies comparing the profile of various mirnas in patients on hemodialysis and peritoneal dialysis. objective. evaluation of the associations between the blood serum mirna-21, mirna-126 and mirna-210 levels and the adequacy of dialysis, left ventricular myocardium contractility (ejection fraction), and lipid metabolism in patients on renal replacement therapy (RRT) with hemodialysis and peritoneal dialysis. materials and methods. the study included 40 patients, of whom 18 received programmed hemodialysis (PhD) therapy, 28 -peritoneal dialysis (Pd). The control group consisted of 28 healthy volunteers. In addition to routine examination methods, assessment of the adequacy of dialysis by kt/v and echocardiography, all patients underwent the determination of the mirna-21, mirna-126 and mirna-210 expression levels by the real-time polymerase chain reaction. results. a highly significant negative correlation between the mirna-126 expression level and the dialysis adequacy indicator by kt/v was revealed (rs = -o.687; p = o.oo2). both mirna-21 and mirna-126 had negative correlation with serum total cholesterol levels (rs = -o.409; p = 0.009 and rs = -o.414; p = o.oo8, respectively). low microrna-21 levels were associated with higher low-density lipoprotein level (rs = -o.4; p = o.oi), while microrna-126 negatively correlated with the high-density lipoprotein level (rs = -o.36; p = o.024). an increase in the mirna-21 and mirna-126 expression levels was observed in patients with atrial fibrillation (P= o.oo3). the mirna-210 expression level negatively correlated with the value of the left ventricular ejection fraction (LVEF) measured by Simpson method according to echocardiography data (rs = -0.5; p = o.oi). Conclusion. a negative association between the mirna-126 expression level and indicators of dialysis adequacy in dialysis patients was found. Indicators of microRNA expression also reflect the state of lipid metabolism in dialysis patients. in particular, low microrna-21 levels were associated with increased proatherogenic low-density lipoprotein levels. microrna-21 and microrna-126 directly correlated with the prevalence of atrial fibrillation, and microrna-210 negatively correlated with the LVEF measured according to Simpson method.

Full Text

Restricted Access

About the authors

A. R. Rind

I.P. Pavlov First St. Petersburg State Medical University

Email: anastasiia.rind@gmail.com
Postgraduate Student at the Department of Nephrology and Dialysis, FPGE St. Petersburg, Russia

A. M Yesayan

I.P. Pavlov First St. Petersburg State Medical University

Email: essaian.ashot@gmail.com
Dr. Sci. (Med.), Professor, Head of the Department of Nephrology and Dialysis, FPGE St. Petersburg, Russia

I. G. Kayukov

I.P. Pavlov First St. Petersburg State Medical University

Dr. Sci. (Med.), Professor at the Department of Nephrology and Dialysis, , FPGE St. Petersburg, Russia

M. I Zaraysky

I.P. Pavlov First St. Petersburg State Medical University

Email: mzaraiski@yandex.ru
Dr. Sci. (Med.), Professor at the Department of Clinical Laboratory Diagnostics St. Petersburg, Russia

References

  1. Abdellatif M. Differential Expression of MicroRNAs in Different Disease States. Circ Res. 2015; 110:638-650.
  2. Cipollone F, Felicioni L, Sarzani R., et al. A unique microRNA signature associated with plaque instability in humans. Stroke. 2018; 42:2556-2563. microRNA expression and classical risk factors in the risk of coronary heart disease. Scientific Reports. 2015; 5:14925.
  3. Gacon J., Badacz R., Stqpien E., et al. Diagnostic and prognostic micro -RNAs in ischaemic stroke due to carotid artery stenosis and in acute coronary syndrome: a four-year prospective study. Kardiol Pol. 2018;76(2):362-369. doi: 10.5603/KP.a2017.0243.
  4. Szeto C.C., Wang G, Ng J.KC. et al. Urinary miRNA profile for the diagnosis of IgA nephropathy. BMC Nephrol 2019;20. https://doi.org/10.1186/ s12882-019-1267-4
  5. Liu Z, Wang S, Mi Q.S., Dong Z. MicroRNAs in pathogenesis of acute kidney injury. Nephron. 2016;134:149-153. doi: 10.1159/000446551.
  6. Hamdorf M., Kawakita S., Everly M. The Potential of MicroRNAs as Novel Biomarkers for Transplant Rejection. J Immunol Res. 2017;2017:4072364. doi: 10.1155/2017/4072364.
  7. Khan Z, Suthanthiran M., Muthukumar T. MicroRNAs and Transplantation. Clin Lab Med. 2019Mar;39(1):125-143. doi: 10.1016/j.cll.2018.10.003.
  8. Lopez-Anton M., Bowen T., Jenkins R.H. microRNA regulation of peritoneal cavity homeostasis in peritoneal dialysis. Biomed Res Int. 2015;2015:929806. doi: 10.1155/2015/929806.
  9. Chen C.L., Lin C.H., Li A.L., Huang C.C., Shen B.Y., Chiang Y.R., Fang P.L., Chang H.C., Li K.L., Yang W.C., Horng J.T., Ma N. Plasma miRNA profile is a biomarker associated with urothelial carcinoma in chronic hemodialysis patients. Am J Physiol Renal Physiol. 2019 Jun 1;316(6):F1094-F1102. doi: 10.1152/ajprenal.00014.2019.
  10. Wu C.C., Chen L.J., Hsieh M.Y., Lo C.M., Lin M.H., Tsai H.E., Song H.L., Chiu J.J. MicroRNA-21 and Venous Neointimal Hyperplasia of Dialysis Vascular Access. Clin J Am Soc Nephrol. 2018;13(11): 1712-1720. doi: 10.2215/CJN.02410218.
  11. Ketszeri M., Kir sc h A., Frauscher B., Moschovaki-Filippidou F., Mooslechner A.A., Kirsch A.H., Schabhuettl C., Aringer I., Artinger K., Pregartner G., Ekart R., Breznik S., Hojs R., Goessler W., Schilcher I., Mtiller H., Obermayer-Pietsch B., Frank S., Rosenkranz A.R., Eller P., Eller K. MicroRNA-142-3p improvesvascularrelaxation in uremia. Atherosclerosis. 2019;280:28-36. doi: 10.1016/j.atherosclerosis.2018.11.024.
  12. Szeto C.C., Chow K.M., Kwan B.C., Cheng P.M., Luk C.C., Ng J.K., Law M.C., Leung C.B., Li P.K. Peritoneal dialysis effluent miR-21 and miR-589 levels correlate with longitudinal change in peritoneal transport characteristics. Clin Chim Acta. 2017;464:106-112. doi: 10.1016/j.cca.2016.11.020.
  13. Lopez-Anton M., Lambie M., Lopez-Cabrera M., Schmitt C.P., Ruiz-Carpio V., Bartosova M., Schaefer B., Davies S., Stone T., Jenkins R., Taylor P.R., Topley N., Bowen T., Fraser D. miR-21 Promotes Fibrogenesis in Peritoneal Dialysis. Am J Pathol. 2017;187(7):1537-1550. doi: 10.1016/j.ajpath.2017.03.007.
  14. Dziedzic M., Orlowska E., Powrozek T., Solski J. Role of circulating microRNA in hemodialyzedpatients. Postepy Hig Med Dosw (Online). 2016;70(0):1362-1366. doi: 10.5604/17322693.1227641. PMID: 28234233.
  15. Cavallari C., Dellepiane S., Fonsato V., Medica D., Marengo M., Migliori M., Quercia A.D., Pitino A., Formica M., Panichi V., Maffei S., Biancone L., Gatti E., Tetta C., Camussi G., Cantaluppi V. Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating miR-223 Expression in Plasma Extracellular Vesicles. J Immunol. 2019;202(8):2372-2383. Doi: 10.4049/ jimmunol.1800747.
  16. El Sharkawy M., Aly O., Elsayed H., Ezzat H., Mohab A, Usama D. MicroRNA 499 gene expression in patients on hemodialysis with cardiovascular complications. Hemodial Int. 2017 Oct;21 Suppl 2:S16-S21. Doi: 10.1111/ hdi.12594. Erratum in: Hemodial Int. 2018;22(1):140.
  17. Mellis D., Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018;46(1):11-21. doi: 10.1042/BST20170037.
  18. Vegter E.L., van der Meer P., de Windt L.J., Pinto Y.M., Voors A.A. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457-468. doi: 10.1002/ejhf.495.
  19. Zampetaki A., Kiechl S., Drozdov I., Willeit P., Mayr U., Prokopi M., Mayr A., Weger S., Oberhollenzer F., Bonora E., Shah A., Willeit J., Mayr M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2017;107(6):810-817. Doi: 10.1161/ CIRCRESAHA.110.226357.
  20. Nattel S. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin Electrophysiol. 2017;3(5):425-435. Doi: 10.1016/j. jacep.2017.03.002.
  21. Komal S., Yin J.J., Wang S.H., Huang C.Z., Tao H.L., Dong J.Z., Han S.N., Zhang L.R. MicroRNAs: Emerging biomarkers for atrial fibrillation. J Cardiol. 2019;74(6):475-482. doi: 10.1016/j.jjcc.2019.05.018.
  22. Aryal B., Singh A.K., Rotllan N., Price N., Fernandez-Hernando C. MicroRNAs and lipid metabolism. Curr Opin Lipidol. 2017;28(3):273-280. doi: 10.1097/MOL.0000000000000420.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies