Association of nephrolitiasis with arterial hypertension: gender specificities of comorbidity pathogenesis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. evaluation of the gender specificities of the reactivity of the sympathoadrenal (sas) and renin-angiotensin (ras) systems in comorbidity of nephrolithiasis with arterial hypertension (ah). Material and methods. The study analyzed the clinical, instrumental and laboratory data of 196 patients with nephrolithiasis. the cohort was represented by 92 men and 104 women. the platelet aggregation was assessed by the turbidimetric method using a ChronoLog analyzer (usa). Adrenaline and angiotensin-2 agonists (Sigma) were used to analyze AT1 and α2-adrenergic receptors. results. ah was detected in 12.o% of the examined men and 10.4% of women. the features of the pathogenesis of nephrolithiasis comorbid with ah in men were associated with hyperreactivity of the α2-adrenergic receptor and the at1 receptor, while in women the at1 receptor had dominant activity. in men with stones in the urinary tract and ah, the values of microhematuria were higher (P <0.001) than in patients without comorbidity. In women with nephrolithiasis, this phenomenon was not manifested - the severity of microhematuria did not differ in the presence and absence of ah. when nephrolithiasis was associated with ah, there was no significant difference between men and women in the severity and frequency of hematuria; however, women had more pronounced leukocyturia (P<0.05). Conclusion. Pharmacological correction of arterial hypertension in the presence of nephrolithiasis is advisable to carry out taking into account the individual reactivity of sas and ras in men and women.

Full Text

Restricted Access

About the authors

Eduard F. Barinov

M. Gorky Donetsk National Medical University

Email: barinov.ef@gmail.com
Dr. Sci. (Med.), Professor, Head of the Department of Histology, Cytology and Embryology Donetsk, Ukraine

Kh. V Grigoryan

M. Gorky Donetsk National Medical University

Cand. Sci. (Med.), Teaching Assistant at the Department of Urology Donetsk, Ukraine

Yu. Yu. Malinin

M. Gorky Donetsk National Medical University

Cand. Sci. (Med.), Head of the Department of Urology Donetsk, Ukraine

References

  1. Nackeeran S., Katz J., Ramasamy R., Marcovich R. Association between sex hormones and kidney stones: analysis of the National Health and Nutrition Examination Survey. World J. Urol. 2020; Jun 5. Doi: 10.1007/ s00345-020-03286-w.
  2. Ping H., Lu N,, Wang M., et al. New-onset metabolic risk factors and the incidence of kidney stones: a prospective cohort study. BJU Int. 2019;124(6):1028-33. doi: 10.1111/bju.14805.
  3. Fernandez A.M., Sherer B.A., Gansky S.A., et al. Ectopic biomineralization in kidney stone formers compared to non-stone formers. Transl. Androl. Urol. 2020;9(5):2129-37. doi: 10.21037/tau-19-927.
  4. Maddahi N., Aghamir S.M.K, Moddaresi S.S., et al. The association of Dietary Approaches to Stop Hypertension-style diet with urinary risk factors of kidney stones formation in men with nephrolithiasis. Clin. Nutr. ESPEN. 2020;39:173-9. doi: 10.1016/j.clnesp.2020.06.021.
  5. Shang W., Li Y, Yali Ren Y., et al. Nephrolithiasis and risk of hypertension: a meta-analysis of observational studies. BMC Nephrol. 2017;18(1):344. doi: 10.1186/s12882-017-0762-8.
  6. Huang C.Ch., Chung Ch.-M., Leu H.B., et al. Sex difference in sympathetic nervous system activity and blood pressure in hypertensive patients. J. Clin. Hypertens (Greenwich). 2020 Nov 15. doi: 10.1111/jch.14098.
  7. Beara-Lasic L., Goldfarb D.S. Nephrolithiasis in women: how different from men? Curr Opin Nephrol Hypertens. 2020;29(2):201-6. doi: 10.1097/MNH.0000000000000577.
  8. Harrison P., Mackie I., Mumford A. British. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol. 2011; 155 (1): 30-44.
  9. Tanaka S., Okusa M.D. Crosstalk between the nervous system and the kidney. Kidney Int. 2020;97(3):466-76. doi: 10.1016/.kint.2019.10.032.
  10. Sata Y., Burke S.L., Gueguen C., et al. Contribution of the Renal Nerves to Hypertension in a Rabbit Model of Chronic. Kidney Dis. Hypertens. 2020;76(5):1470-9. doi: 10.1161/HYPERTENSIONAHA.120.15769.
  11. Guyenet P.G., Stornetta R.L., Souza G.M.P.R., et al. Neuronal Networks in Hypertension: Recent Advances Hypertension. 2020;76(2):300-11. doi: 10.1161/HYPERTENSIONAHA.120.14521.
  12. Lydia Hering L., Rahman M., Potthoff S.A., et al. Role of a2-Adrenoceptors in Hypertension: Focus on Renal Sympathetic Neurotransmitter Release, Inflammation, and Sodium Homeostasis. Front. Physiol. 2020;11:566871. doi: 10.3389/fphys.2020.566871.
  13. Goldstein D.S. Plasma catecholamines and essential hypertension. An analytical review. Hypertension. 1983;5(1):86-99. doi: 10.1161/01.hyp.5.1.86.
  14. Berent H., Kuczynska Kochmanski M., et al. Hemorrheological indices, catecholamines, neuropeptide Y and serotonin in patients with essential hypertension. Blood Press. 1997;6(4):203-8. doi: 10.3109/08037059709062070.
  15. Wocial B., Ignatowska-Switalska H., Pruszczyk P., et al. Plasma neuropeptide Y and catecholamines in women and men with essential hypertension. Blood Press. 1995;4(3):143-7. doi: 10.3109/08037059509077586.
  16. Miller J.A., Cherney D.Z., Duncan J.A., et al. Gender differences in the renal response to renin-angiotensin system blockade. J. Am. Soc. Nephrol. 2006;17(9):2554-60. doi: 10.1681/ASN.2005101095.
  17. Song J.-J., Ma Zh, Wang J., et al. Gender Differences in Hypertension. Cardiovasc. Transl. Res. 2020;13(1):47-54. Doi: 10.1007/ s12265-019-09888-z.
  18. Sama I.E., Alice Ravera A., Santema B.T., et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur. Heart J. 2020;41(19):1810-7. doi: 10.1093/eurheartj/ehaa373.
  19. Giosia P.D, Giorgini P, Stamerra C.A., et al. Gender Differences in Epidemiology, Pathophysiology, and Treatment of Hypertension. Curr. Atheroscler. Rep. 2018;20(3):13. doi: 10.1007/s11883-018-0716-z.
  20. Haaland H.D., Holmsen H., Dorsam R.T. Potentiation by adrenaline of agonist-induced responses in normal human platelets in vitro. Platelets. 2011;22:328-37.
  21. Zhang S, Wang Z, Zheng A., Yuan R , et al. Blood Pressure and Outcomes in Patients With Different Etiologies of Intracerebral Hemorrhage: A Multicenter Cohort Study. J. Am. Heart Assoc. 2020;9(19):e016766. doi: 10.1161/JAHA.120.016766.
  22. Hall J.E., Mouton A., da Silva A.A., et al. Obesity, kidney dysfunction and inflammation: interactions in hypertension. Cardiovasc. Res. 2020; cvaa336. doi: 10.1093/cvr/cvaa336.
  23. Zhang R.M., McNerney K.P., Riek A.E., Carlos Bernal-Mizrachi C. Immunity and Hypertension. Acta Physiol (Oxf). 2021;231(1):e13487. doi: 10.1111/apha.13487.
  24. Junior A.F.M., Dalpiaz P.L.M., da Silva Escouto L., et al. Involvement of sex hormones, oxidative stress, ACE and ACE2 activity in the impairment of renal function and remodelling in SHR. Life Sci. 2020;257:118138. doi: 10.1016/j.lfs.2020.118138.
  25. Zheng F., Ye Ch., Wan G.-W., et al. Interleukin-1ß in hypothalamic paraventricular nucleus mediates excitatory renal reflex. Pflugers Arch. 2020;472(11):1577-86. doi: 10.1007/s00424-020-02461-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies