Essential amino acids and their α-ketoand hydroxy analogues in the diet of uremic patients (biochemical aspect)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

With uremia, it becomes necessary to reduce the nitrogen level in the diet while maintaining the satisfaction of the human body's need for essential amino acids. In this regard, the latter are replaced in the diet with the corresponding α-keto acids or α-hydroxy acids that are in equilibrium with them, in the expectation that keto acids will turn into amino acids during transamination. However, some essential amino acids are not replaced by the corresponding α-keto and hydroxy acids and are administered unchanged. The article discusses the possibility of replacing 10 essential amino acids with α-keto- and hydroxy analogues in the diet of uremic patients, of which 2 are nonessential for healthy people. The substitution base of each amino acid by its analogue is analyzed. Recommendations on providing patients with threonine and methionine are given. Since nephropathies can be of diabetic origin, each amino acid is also analyzed for glucogenic or ketogenic effects. The presence of the latter is recognized as the basis for limiting the introduction of this amino acid and its α-keto or hydroxy analogue

Full Text

Restricted Access

About the authors

Andrey Vladlenovich Malinovsky

Biofizpribor, Special Design and Technological Bureau, Branch of FMBA of Russia

Email: info@biofizpribor.ru
Process Engineer

References

  1. Shah A.P., Kalantar-Zaden K., Kopple J.D. Is there a role for ketoacid supplements in the management of CKD? Am. J. Kidney Dis. 2015; 65(5):659-73.
  2. Березов Т.Т. Обмен аминокислот нормальных тканей и злокачественных опухолей. М., 1969.
  3. Okuno E., Tsujimoto M., Nakamura M., Kido R. 2-Aminoadipate-2-oxoglutarate aminotransferase isoenzymes in human liver:a plausible physiological role in lysine and tryptophan metabolism. Enzyme Protei. 1993;47:136-48.
  4. Barret G. Chemistry and biochemistry of the amino acids. UK LONDON NEW YORK Chapman and Hall. 2012.
  5. Transamination of amino acids. Aminotransferase reactions. Vitamins. 2018.
  6. Thuraisingham R.C., Nott C.A., Dodd S.M., Yaqooh M.M. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int. 2000;57:1968-972.
  7. Kopple J.D. Phenylalanine and Tyrosine Metabolism in Chronic Kidney Failure. J. Nutrit. 2007;137:S1586-90.
  8. Debnath S., Velagapudi C., Redus L., et al. Tryptophan Metabolism in Patients With Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. Int. J. Tryptophan Res. 2017;10.
  9. Chou C.-A., Lin C.-N., Chiu D.T.-Y., et al. Tryptophan as a surrogate prognostic marker for diabetic nephropathy. J. Diab. Investig. 2018; 9(2):366-74.
  10. Малиновский А.В. Схема и выводы Ленинджера нуждаются в уточнениях. Биоорганическая химия.2022;48(1):53-62.
  11. Phenylalanine to Tyrosine Ratio in Renal Failure. Nutrit. Rev. 1974; 32(3):92-3. doi: 10.1111/j.1753-4887.1974.tb06286.x.
  12. Saito K., Fujigaki S.,Heyes M.P., et al. Mechanism of increases in L-kynurenine and quinolinicacid in renal insufficiency. Am. J. Physiol. Renal. Physiol.2000;279:F565-72.
  13. Zhao J. Plasma kynurenic acid/tryptophan ratio: a sensitive and reliable biomarker for the assessment of renal function. Ren. Fail. 2013;35(5):648-53.
  14. Mutsaers H.A.M., Masereeuw R., Olinga P. Altered tryptophan metabolism and CKD-associated fatigue. Kidney Int. 2014;86:1060-1.
  15. Karn N., McKercher C., Nichols D.S., et al. Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning. BMC. Nephrol. 2016;17:171.
  16. Konje V.C., Rajendiran T.M., Bellovich K., et al. Tryptophan levels associate with incident cardiovascular disease in chronic kidney disease. Clin. Kidney J. 2020;1-9.
  17. Cheng Y., Li Y., Benkowitz P., et al. The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Sci. Rep. 2020;Article 10:12675.
  18. Kwiatkowska I., Hermanowicz J.M., Mysliwiec M., Pawlak D. Oxidative Storm Induced by Tryptophan Metabolites: Missing Link between Atherosclerosis and Chronic Kidney Disease. Oxidativ. Med. Cell. Longevity. 2020;2:1-16.
  19. Badavi A.A. Int. J. Tryptophan. Res. 2017;10:1-20.
  20. Badavi A.A. Egypt J. Basic Clin. Pharmacol. 1019;9:1-30.
  21. Малиновский А.В. Обладает ли треонин кетогенным действием? Вопросы биологической, медицинской и фармацевтической химии. 2020;6:34.
  22. Okuno E., Minatogawa Y., Nakamura M., et al. R. Crystallization and characterization of human liver kynurenine-glyoxylate aminotransferase. Identity with alanine-glyoxylate aminotransferase and serine-pyruvate aminotransferase. Biochem. J. 1980;189:581-90.
  23. Han C., Cal T., Tagle D.A., Robinson H., Li J. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II. Biosci. Rep. 2008;28:205-15.
  24. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 1998;356(1):1-11.
  25. Deng G., Vaziri N.D., Jabbari B., et al. Increased Tyrosine Nitration of the Brain in Chronic Renal Insufficiency: Reversal by Antioxidant Therapy and Angiotensin-Converting Enzyme Inhibition. J. Am. Soc. Nephrol. 2001;12(9):1892-99.
  26. Tessari P., Deferrari G., Robaudo C., et al. Phenylalanine hydroxylation across the kidney in humans Rapid Communication. Kidney Int. 1999;56:2168-72.
  27. Lichter-Konecki U., Hipke C.M., Konecki D.S. Human Phenylalanine Hydroxylase Gene Expression in Kidney and Other Nonhepatic Tissues. Mol. Genet. Metab. 1999;67(4):308-16.
  28. Moller N., Meek S., Bigelow M., et al. The kidney is an important site forin vivo phenylalanine-to-tyrosine conversion in adult humans: A metabolic role of the kidney. Proc. Natl. Acad. Sci. USA. 2000;97:1242-46.
  29. Boine Y., Albrigt R., Bigelow A.M., et al. Impairment of phenylalanine conversion to tyrosine inend-stage renal disease causing tyrosine deficiency. Kidney Int. 2004;66:591-96.
  30. Малиновский А.В. Различия превращения гистидина у человека и других млекопитающих. Цитология. 2021;63(4):403-8.
  31. Bergstrom J., Furst P., Josephson B., Noree L.O. Improvement of nitrogen balance in auremic patient by the addition of histidine to essential amino acid solutions given intravenously. Life Sci. II. 1970;9:787-94.
  32. Stifel F.B., Herman R.H. Is histidine an essential amino acid in man? Am. J. Clin. Nutr. 1972;25(2):182-85.
  33. Watanabe M., Sulman M.E., Qureshi A.R., et al. Consequences of low plasma histidine inchronic kidney disease patients: associations with inflammation, oxidative stress, and mortality. Am. J. Clin. Nutr. 2008;87(6):1860-66.
  34. Stenvinkel P., Heimburger Q., Paultre F., et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renalfailure. Kidney Int. 1999;55(5):1899-911.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies