Features of kidney damage in metabolic syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The meteoric rise of metabolic syndrome has made it a major global health problem. The results of studies show a higher frequency of kidney pathology in patients of this group. Abdominal obesity, hypertension, dyslipidemia, and insulin resistance are associated with effects on the kidneys through the systemic release of multiple pro-inflammatory cytokines, generalized oxidative stress, and the development of chronic inflammation. This review considers the main pathophysiological mechanisms of kidney damage and variants of their structural changes under the influence of each of the components of the metabolic syndrome. The most significant laboratory markers and possibilities of pharmacotherapy are discussed, the study of these parameters seems important in the timely prevention of chronic kidney disease in such patients.

Full Text

Restricted Access

About the authors

Aleksandr A. Vorotylov

City Clinical Hospital № 38, Nizhny Novgorod

Email: vorotylov94@gmail.com

General Practitioner, City Clinical Hospital № 38

Russian Federation, Nizhny Novgorod

Zinaida D. Mikhailova

City Clinical Hospital № 38, Nizhny Novgorod

Author for correspondence.
Email: zinaida.mihailowa@yandex.ru

Dr.Sci.(Med.), Associate Professor, Consultant, City Clinical Hospital № 38

Russian Federation, Nizhny Novgorod

References

  1. Кытикова О.Ю., Антонюк М.В., Кантур Т.А. и др. Распространенность и биомаркеры метаболического синдрома. Ожирение и метаболизм. 2021;18(3):302–12. doi: 10.14341/omet12704. [Kytikova O.Yu., Antony- uk М.V., Kantur T.A., et al. Prevalence and biomarkers of metabolic syndrome. Obes. Metab. 2021;18(3):302–12 (In Russ.)].
  2. Ranasinghe P., Mathangasinghe Y., Jayawardena R., et al. Prevalence and trends of metabolic syndrome among adults in the asia_pacific region: a systematic review. BMC publichealth. 2017;17:101. Doi: 10.1186/ s12889-017-4041.
  3. Wu L.T., Shen Y.F., Hu L., et al. Prevalence and associated factors of metabolic syndrome in adults: a population-based epidemiological survey in Jiangxi province, China. BMC Public Health. 2020;20(1):133. doi: 10.1186/s12889-020-8207-x.
  4. Moore J.X., Chaudhary N., Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chron. Dis. 2017;14:160287. doi: 10.5888/pcd14.160287.
  5. Рекомендации по ведению больных с метаболическим синдромом. Клинические рекомендации. М., 2013. 43 с. [Recommendations for the management of patients with metabolic syndrome. Clinical recommendations. M., 2013. 43 p. (In Russ.)].
  6. Успенский Ю.П. и др. Метаболический синдром. Учебное пособие. СПб., 2017. С. 8–9. [Metabolic syndrome. Study guide/ Uspensky Yu.P., et al. St. Petersburg, 2017. Р. 8–9 (In Russ.)].
  7. Nolan P.B., Carrick-Ranson G., Stinear J.W., et al. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep. 2017;7:211–5. doi: 10.1016/j.pmedr.2017.07.004.
  8. Zhang X., Lerman L.O. The metabolic syndrome and chronic kidney disease. Transl. Res. 2017;183:14–25. doi: 10.1016/j.trsl.2016.12.004.
  9. Антонюк М.В., Новгородцева Т.П., Денисенко Ю.К. и др. Метаболический синдром. Актуальные вопросы диагностики, патогенеза и восстановительного лечения: монография. Владивосток: издательство Дальневосточного федерального университета; 2018. 212 с. [Antonyuk M.V., Novgorodtseva T.P., Denisenko Yu.K., et al. Metabolic syndrome. Topical issues of diagnosis, pathogenesis and restorative treatment: monograph. Vladivostok: Publishing House of the Far Eastern Federal University; 2018. 212 p. (In Russ.)].
  10. Alizadeh S., Esmaeili H., Alizadeh M., et al. Metabolic phenotypes of obese, overweight, and normal weight individuals and risk of chronic kidney disease: A systematic review and meta-analysis. Arch. Endocrinol. Metab.2019;63:427–37. doi: 10.20945/2359-3997000000149.
  11. Wang M., Wang Z., Chen Y., Dong Y. Kidney Damage Caused by Obesity and Its Feasible Treatment Drugs. Int. J. Mol. Sci. 2022;23(2):747. Published 2022 Jan 11. doi: 10.3390/ijms23020747.
  12. Alicic R.Z., Johnson E.J., Tuttle K..R. SGLT2 Inhibition for the Prevention and Treatment of Diabetic Kidney Disease: A Review. Am. J. Kidney Dis. 2018;72:267–77. doi: 10.1053/j.ajkd.2018.03.022.
  13. Navaneethan S.D., Kirwan J.P., Remer E.M., et al. Adiposity, physical function, and their associations with insulin resistance, inflammation, and adipokines in CKD. Am. J. Kidney Dis. 2021;77:44–55. Doi: 10.1053/ j.ajkd.2020.05.028.
  14. Wang H., Li J., Gai Z., et al. TNF-α Deficiency prevents renal inflammation and oxidative stress in obese mice. Kidney Blood Press. Res. 2017;42:416–27. doi: 10.1159/000478869.
  15. Pessoa E.D.A., Convento M.B., Castino B., et al. Beneficial effects of isoflavones in the kidney of obese rats are mediated by PPAR-gamma expression. Nutrients. 2020;12:1624. doi: 10.3390/nu12061624.
  16. Kotsis V., Martinez F., Trakatelli C., Redon J. Impact of Obesity in Kidney Diseases. Nutrients. 2021;13(12):4482. Published 2021 Dec 15. doi: 10.3390/nu13124482.
  17. Шишкова Ю.Н., Миняйлова Н.Н., Ровда Ю.И., Казакова Л.М. Механизмы поражения почек при ожирении и метаболическом синдроме. МиД. 2018;2. [Shishkova Yu.N., Minyailova N.N., Rovda Yu.,I., Kazakova L.M. Mechanisms of kidney damage in obesity and metabolic syndrome (literature review). MFA. 2018;2 (In Russ.)].
  18. Исламова М.С., Сабиров М.А., Даминова К. М. Роль лептина как биомаркера раннего повреждения почек у больных с ожирением. Лечащий врач. 2022;1(25):42–5. doi: 10.51793/OS.2022.25.1.008. [Islamova M.S., Sabirov M.A., Daminova K.M. The role of leptin as a biomarker of early kidney damage in obese patients. The Attending Physician. 2022;1(25): 42–5 (In Russ.)].
  19. Tsuboi N., Okabayashi Y., Shimizu A., Yokoo T. The Renal Pathology of Obesity. Kidney Int. Rep. 2017;2(2):251–60. doi: 10.1016/j.ekir.2017.01.007.
  20. Okabayashi Y., Tsuboi N., Sasaki T., et al. Single-nephron GFR in patients with obesity-related glomerulopathy. Kidney Int. Rep. 2020;5:1218–27. doi: 10.1016/j.ekir.2020.05.013.
  21. Shariq O.A., McKenzie T.J. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland. Surg. 2020;9(1):80–93. doi: 10.21037/gs.2019.12.03.
  22. Cabandugama P.K., Gardner M.J., Sowers J.R. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med. Clin. North Am. 2017;101(1):129–37. doi: 10.1016/j.mcna.2016.08.009.
  23. Tain Y.L., Lin Y.J., Sheen J.M., et al. High Fat diets sex-specifically affect the renal transcriptome and program obesity, kidney injury, and hypertension in the offspring. Nutrients. 2017;9:357. doi: 10.3390/nu9040357.
  24. Schutten M.T., Huben A.J., de Leeuw P.V., et al. The relationship between the signaling of the renin-angiotensin-aldosterone system of adipose tissue and hypertension associated with obesity. Physiology (Bethesda) 2017;32:197–209. doi: 10.1152/physiol.00037.2016.
  25. Lelis D.d.F., Freitas D.F.d., Machado A.S., et al. Angiotensin-(1-7), adipokines and inflammation. Metab. 2019;95:36–45. Doi: 10.1016/ j.metabol.2019.03.006.
  26. Hall J.E., do Carmo J.M., da Silva A.A., et al. Hypertension caused by obesity: interaction of neurohumoral and renal mechanisms. Circus Res. 2015;116:991–1006. doi: 10.1161/CIRCRESAHA.116.305697.
  27. Opazo-Ríos L., Mas S., Marín-Royo G., et al. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int. J. Mol. Sci. 2020;21(7):2632. doi: 10.3390/ijms21072632.
  28. Mesilati-Stahy R., Argov-Argaman N. Changes in lipid droplets morphometric features in mammary epithelial cells upon exposure to non-esterified free fatty acids compared with VLDL. PLOS One. 2018;13:e0209565. doi: 10.1371/journal.pone.0209565.
  29. Sharma I., et al. New Pandemic: Obesity and Associated Nephropathy. Front. Med. 2021;8:673556. doi: 10.3389/fmed.2021.673556.
  30. Zhang H., Sun S.K. NF-kB in inflammation and kidney diseases. Cell. Biosci. 2015;5:63. doi: 10.1186/s13578-015-0056-4.
  31. Nishi H., Higashihara T., Inagi R. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients. 2019;11:1664. doi: 10.3390/nu11071664.
  32. Câmara N.O.S., Iseki K., Kramer H., et al. Kidney disease and obesity: Epidemiology, mechanisms and treatment. Nat. Rev. Nephrol. 2017;13:181–90. doi: 10.1038/nrneph.2016.191.
  33. Alicic R.Z., Rooney M.T., Tuttle K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017;12(12):2032–45. doi: 10.2215/CJN.11491116.
  34. Tuttle K.R. Back to the Future: Glomerular Hyperfiltration and the Diabetic Kidney. Diab. 2017;66(1):14–6. doi: 10.2337/dbi16-0056.
  35. Yu S.M., Bonventre J.V. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv. Chron. Kidney Dis. 2018;25(2):166–80. Doi: 10.1053/ j.ackd.2017.12.005.
  36. Lin Y.C., Chang Y.H., Yang S.Y., et al. Update of pathophysiology and management of diabetic kidney disease. J. Formos Med. Assoc. 2018;117(8):662–75. doi: 10.1016/j.jfma.2018.02.007.
  37. Shlipak M.G., Tummalapalli S.L., Boulware L.E., et al. Conference Participants. The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2021;99(1):34–47. doi: 10.1016/j.kint.2020.10.012.
  38. Rashidbeygi E., Safabakhsh M., Delshad Aghdam S., et al. Metabolic syndrome and its components are related to a higher risk for albuminuria and proteinuria: evidence from a meta-analysis on 10,603,067 subjects from 57 studies. Diab. Metab. Syndr. 2019;13:830–43. doi: 10.1016/j.dsx.2018.12.006.
  39. Shen Z., Fang Y., Xing T., Wang F. Diabetic Nephropathy: From Pathophysiology to Treatment. J. Diab. Res. 2017;2017:2379432. doi: 10.1155/2017/2379432.
  40. Colhoun H.M, Marcovecchio M.L. Biomarkers of diabetic kidney disease. Diabetol. 2018;61(5):996–1011. doi: 10.1007/s00125-018-4567-5.
  41. Kabasawa K., Hosojima M., Ito Y., et al. Association of metabolic syndrome traits with urinary biomarkers in Japanese adults. Diabetol. Metab. Syndr. 2022;14(1):9. [Published 2022 Jan 15]. doi: 10.1186/s13098-021-00779-5.
  42. Sikorska D., Grzymislawska M., Roszak M., et al. Simple obesity and renal function. J. Physiol. Pharmacol. 2017;68:175–80.
  43. Jaikumkao K., Pongchaidecha A., Chatsudthipong V., et al. The roles of sodium-glucose cotransporter 2 inhibitors in preventing kidney injury in diabetes. Biomed. Pharmacother. 2017;94:176–87. doi: 10.1016/j.biopha.2017.07.095.
  44. Buonfiglio D., Parthimos R., Dantas R., et al. Melatonin absence leads to long-term leptin resistance and overweight in rats. Front. Endocrinol. 2018;9:122. doi: 10.3389/fendo.2018.00122.
  45. Prado N.J., Ferder L., Manucha W., Diez E.R. Anti-inflammatory effects of melatonin in obesity and hypertension. Curr. Hypertens. Rep. 2018;20:45. doi: 10.1007/s11906-018-0842-6.
  46. Onaolapo A.Y., Adebisi E.O., Adeleye A.E., et al. Dietary Melatonin Protects against Behavioural, Metabolic, Oxidative, and Organ Morphological Changes in Mice that are Fed High-Fat, High-Sugar Diet. Endocr. Metab. Immune Disord. Drug Targets. 2020;20:570–83. Doi: 10.2174/ 1871530319666191009161228.
  47. Zha D., Wu H., Gao Р. Adiponectin and its receptors in diabetic kidney disease: molecular mechanisms and clinical potential. Endocrinology. 2017;158: 2022–34. doi: 10.1210/ru.2016-1765.
  48. Yamakado S., Cho H., Inada M., et al. Urine adiponectin as a new diagnostic indicator of chronic kidney disease due to diabetic nephropathy. BMJ. Open Diab. Res. Care. 2019;7:e000661. doi: 10.1136/bmjdrc-2019-000661.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies