Intestinal fatty acid binding protein as biomarker of enterocyte injury in patients with renal failure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim: to evaluate serum intestinal fraction of the fatty acid binding protein (I-FABP) in subjects at different stages of chronic kidney disease (CKD), including those receiving hemodialysis treatment.

Material and methods. The cross-sectional study included 3 groups of patients: 1) 20 relatively healthy individuals with GFR>60 ml/min/1.73 m2; 2) 30 patients with CKD C3a-5 (GFR<60 ml/min/1.73 m2); 3) 38 patients with end-stage renal disease (ESRD) receiving hemodialysis treatment. All participants had no clinical manifestations of intestinal pathology. The concentration of I-FABP in blood serum was assessed by ELISA using commercially available kit.

Results. I-FABP levels significantly increased in parallel with an advance of renal insufficiency and reached maximum values in patients with ESRD: 1719,5 (1279,8–1979,6), 3533,2 (2449,5–4234,1), 6340,7 (5436–6732,3) pg/ml respectively. In subjects at the predialysis stages of CKD, a strong inverse correlation of I-FABP with GFR was found (R=0,946, p<0.001).

Conclusion. A decrease in GFR leads to a significant increase of serum I-FABP levels in patients with impaired renal function. This should be taken into account when using I-FABP as a biomarker of enterocytes injury in patients with renal failure.

Full Text

Restricted Access

About the authors

Mikhail O. Pyatchenkov

Military Medical Academy

Email: pyatchenkovMD@yandex.ru
ORCID iD: 0000-0002-5893-3191
SPIN-code: 5572-8891

candidate of medical Sciences, senior lecturer of Department of nephrology and blood purification

Russian Federation, 6, str. Akademika Lebedeva, 194044 Saint Petersburg

Evgeniy V. Sherbakov

Military Medical Academy

Email: evgenvmeda@mail.ru
ORCID iD: 0000-0002-3045-1721
SPIN-code: 6337-6039

nephrologist in the Military Medical Academy

Russian Federation, 6, str. Akademika Lebedeva, 194044 Saint Petersburg

Aleksandra E. Trandina

Military Medical Academy

Email: sasha-trandina@rambler.ru
ORCID iD: 0000-0003-1875-1059
SPIN-code: 6089-3495

doctor of clinical laboratory diagnostics Research department (Biomedical Research) of the RC

Russian Federation, 6, str. Akademika Lebedeva, 194044 Saint Petersburg

Andrei N. Belskykh

Military Medical Academy

Author for correspondence.
Email: d0c62@mail.ru
ORCID iD: 0000-0002-0421-3797
Scopus Author ID: 273050

doctor of medical Sciences, Professor, Corresponding Member, Russian Academy of Sciences, Head of Department of nephrology and blood purification

Russian Federation, 6, str. Akademika Lebedeva, 194044 Saint Petersburg

References

  1. Thenet S., Carrière V. Special Issue on the "Regulation and Physiopathology of the Gut Barrier". Int. J. Mol. Sci. 2022;23(18):10638. doi: 10.3390/ijms231810638.
  2. Okumura R., Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 2017;49(5):e338. doi: 10.1038/emm.2017.20.
  3. Higashiyama M., Miura S., Hokari R. Modulation by luminal factors on the functions and migration of intestinal innate immunity. Front. Immunol. 2023;14:1113467. doi: 10.3389/fimmu.2023.1113467.
  4. Di Tommaso N., Santopaolo F., Gasbarrini A., at al. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int. J. Mol. Sci. 2023;24(2):1470. doi: 10.3390/ijms24021470.
  5. Ткаченко Е.И., Гриневич В.Б., Губонина И.В. и др. Болезни как следствие нарушений симбиотических взаимоотношений организма хозяина с микробиотой и патогенами. Вестн. Российской Военно-медицинской академии. 2021;23(2):243–52. doi: 10.17816/brmma58117. [Tkachenko E., Grinevich V., Gubonina I., et al. Disease as a result of violations of the symbiotic relationship between the host and the microbiota with pathogens. Bull. Rus. Military Med. Acad. 2021;23(2):243–52 (In Russ.)].
  6. Grootjans J., Thuijls G., Verdam F., at al. Non-invasive assessment of barrier integrity and function of the human gut. World J. Gastrointest. Surg. 2010;2(3):61–9. doi: 10.4240/wjgs.v2.i3.61.
  7. Treskes N., Persoon A., van Zanten A. Diagnostic accuracy of novel serological biomarkers to detect acute mesenteric ischemia: a systematic review and meta-analysis. Intern. Emerg. Med. 2017;12(6):821–36. doi: 10.1007/s11739-017-1668-y.
  8. Li S., Chen Y., Chen T., at al. Mesenteric ischemia in patients with end-stage renal disease: a nationwide longitudinal study. Am. J. Nephrol. 2012;35(6):491–7. doi: 10.1159/000338451.
  9. Ori Y., Chagnac A., Schwartz A., et al. Non-occlusive mesenteric ischemia in chronically dialyzed patients: a disease with multiple risk factors. Nephron. Clin. Pract. 2005;101(2):c87–93. doi: 10.1159/000086346.
  10. Пятченков М.О., Власов А.А., Щербаков Е.В. и др. Особенности оценки проницаемости кишечного барьера при хронической болезни почек. Экспериментальная и клиническая гастроэнтерология. 2022;11:46–59. doi: 10.31146/1682-8658-ecg-207-11-46-59. [Pyatchenkov M., Vlasov A., Sherbakov E., et al. Features of assessing the intestinal barrier permeability in chronic kidney disease. Exp. Clin. Gastroenterol. 2022;(11):46–59 (In Russ.)].
  11. Pelsers M., Namiot Z., Kisielewski W., et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin. Biochem. 2003;36(7):529–35. doi: 10.1016/s0009-9120(03)00096-1.
  12. Sun D., Cen Y., Li S., at al. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis. Sci. Rep. 2016;6:34371. doi: 10.1038/srep34371.
  13. Seethaler B., Basrai M., Neyrinck A., et al. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 2021;321(1):G11–7. doi: 10.1152/ajpgi.00113.2021.
  14. Matsumoto S., Sekine K., Funaoka H., et al. Diagnostic performance of plasma biomarkers in patients with acute intestinal ischaemia. Br. J. Surg. 2014;101(3):232–38. doi: 10.1002/bjs.9331.
  15. Habes Q., van Ede L., Gerretsen J., at al. Norepinephrine Contributes to Enterocyte Damage in Septic Shock Patients: A Prospective Cohort Study. Shock. 2018;49(2):137–43. doi: 10.1097/SHK.0000000000000955.
  16. Timmermans K., Sir Ö., Kox M., et al. Circulating iFABP Levels as a marker of intestinal damage in trauma patients. Shock. 2015;43(2):117–20. doi: 10.1097/SHK.0000000000000284.
  17. Piton G., Belin N., Barrot L., et al. Enterocyte Damage: A Piece in the Puzzle of Post-Cardiac Arrest Syndrome. Shock. 2015;44(5):438–44. doi: 10.1097/SHK.0000000000000440.
  18. Sekino M., Okada K., Funaoka H., et al. Association between Enterocyte Injury and Mortality in Patients on Hemodialysis Who Underwent Cardiac Surgery: An Exploratory Study. J. Surg. Res. 2020;255:420–27. doi: 10.1016/j.jss.2020.05.091.
  19. Kitai T., Kim Y., Kiefer K., et al. Circulating intestinal fatty acid-binding protein (I-FABP) levels in acute decompensated heart failure. Clin. Biochem. 2017;50(9):491–95. doi: 10.1016/j.clinbiochem.2017.02.014.
  20. Okada K., Sekino M., Funaoka H., et al. Intestinal fatty acid-binding protein levels in patients with chronic renal failure. J. Surg. Res. 2018;230:94–100. doi: 10.1016/j.jss.2018.04.057.
  21. Tsai I., Wu C., Hung W., et al. FABP1 and FABP2 as markers of diabetic nephropathy. Int. J. Med. Sci. 2020;17(15):2338–45. doi: 10.7150/ijms.49078.
  22. Yu T., Hsuan C., Wu C., et al. Association of plasma fatty acid-binding protein 3 with estimated glomerular filtration rate in patients with type 2 diabetes mellitus. Int. J. Med. Sci. 2022;19(1):82–8. doi: 10.7150/ijms.66876.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Concentration of I-FABP in the blood of patients in the study groups

Download (237KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies