Post-contrast acute kidney injury: definition, prevalence and risk factors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, the number of people with high and very high cardiovascular risk who need various interventional procedures using contrasts is increasing. The use of contrast agents (CAa) in certain categories of people may be accompanied by specific complications characteristic of interventional procedures. Among the complications associated with the use of CAs is acute kidney injury (AKI). Depending on the definition of complications used, the population studied, and the setting, the reported incidence of contrast-induced AKI ranges from 7 to 11%, with an average additional cost of more than $10,000 associated specifically with hospital stay after the interventional procedure with contras tinjection. According to other data, based on modern definitions, the incidence of contrast-induced AKI ranges from 2 to 30%, and in groups with high risk factors for kidney disease, the incidence reaches 20–30%. Most renal complications of interventional procedures are completely reversible within two to four weeks. The need for renal replacement therapy occurs rarely (from 1 to 4%), of which less than 50% require long-term treatment. In addition to issues of definition and prevalence,this review article also examines risk factors for the development of contrast-induced AKI, both associated with patients and with the interventional procedures themselves.

Full Text

Restricted Access

About the authors

Ibragim S. Sabirov

Kyrgyz-Russian Slavic University named after the First President of Russia B.N. Yeltsin

Author for correspondence.
Email: sabirov_is@mail.ru

Dr.Sci. (Med.), Professor, Head of Department of Therapy № 2, Faculty of Medicine, KRSU named after. B.N. Yeltsin

Kyrgyzstan, Bishkek

Ilkhom T. Murkamilov

Kyrgyz-Russian Slavic University named after the First President of Russia B.N. Yeltsin; I.K. Akhunbaev Kyrgyz State Medical Academy

Email: murkamilov.i@mail.ru

Dr.Sci. (Med.), Associate Professor, Department of Faculty Therapy, I.K. Akhunbaev KSMA; Associate Professor, Department of Therapy № 2, KRSU named after. B.N. Yeltsin

Kyrgyzstan, Bishkek; Bishkek

Viktor V. Fomin

Sechenov University

Email: fomin_vic@mail.ru

Dr.Sci. (Med.),, Professor, Corresponding Member of RAS, Head of the Department of Faculty Therapy № 1, Institute of Clinical Medicine named after N.V. Sklifosovsky, Vice-Rector for Innovation and Clinical Activities,. Sechenov University

Russian Federation, Moscow

References

  1. Миронова О.Ю., Фомин В.В. Контраст-индуцированное острое повреждение почек у пациентов с артериальной гипертензией и стабильной ишемической болезнью сердца. Системные гипертензии. 2020;17(3):48–52. [Mironova OI, Fomin VV. Contrast-associated acute kidney injury in patients with arterial hypertension and stable coronary artery disease. Syst. Hypertens. 2020;17(3):48–52 (In Russ.)].
  2. Goerne H., de la Fuente D., Cabrera M., et al. Imaging Features of Complications after Coronary Interventions and Surgical Procedures. Radiograph. 2021;41(3):699–719.
  3. Osborne E., Sutherland C., Scholl A., Rowntree L. Roentgenography of Urinary Tract During Excretion of Sodium Iodid. JAMA. 1983;250(20):2848–53.
  4. Zamora C., Castillo M. Historical Perspective of Imaging Contrast Agents. Magn. Reason. Imaging Clin. N. Am. 2017;25:685–96.
  5. Bartels E., Brun G., Gammeltoft A., Gjorup P. Acute anuria following intravenous pyelography in a patient with myelomatosis. Acta Med. Scand. 1954;150:297–302.
  6. Virani S.S., Alonso A., Benjamin E.J., et al. Heart Disease and Stroke Statistics: 2020 Update-A Report From the American Heart Association. Circulation. 2020;141(9):e139–596.
  7. American Heart Association. Heart Disease and Stroke Statistics-2003 Update. American Heart Association, Dallas, Tex2002.
  8. Yamanaka O., Hobbs R.E. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet. Cardiovasc. Diagn. 1990;21(1):28–40.
  9. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115(10):1296–305.
  10. van der Molen A., Reimer P., Dekkers I., et al. Post-contrast acute kidney injury – Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2018;28(7):2845–55.
  11. Stacul F., van der Molen A., Reimer P., et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur. Radiol. 2011;21(12):2527–41.
  12. Morcos S., Thomsen H., Webb J., et al. Dialysis and contrast media. Eur. Radiol. 2002;12:3026–30.
  13. Contrast Media Safety Committee ESUR. Guidelines on Contrast Media v9. CMSC, 2014. Available via: http://www.esur-cm.org/index.php/en/Accessed: 14 December 2017.
  14. Кокенова З.К. Дефиниции в медицине - язык науки. Вестн. Казахского Национального медицинского университета. 2013;(3–2):366–8. [Kokenova Z.K. Definitions in medicine - the language of science. Bull. Kazakh. Nat. Med. Univer. 2013;(3–2):366–8 (In Russ.)].
  15. Дзгоева Ф.У., Ремизов О.В. Постконтрастное острое повреждение почек. Обновленные рекомендации комитета по безопасности контрастных средств европейского общества урогенитальной радиологии (ESUR) 2018. Часть 1. Нефрология. 2019;23(3):10–20. [Dzgoeva F.U., Remizov O.V. Post-Contrast acute kidney injury. Recommendations for updated of the European Society of Urogenital Radiology Contrast Medium Safety Committee guidelines (2018). Part 1. Nephrol. (Saint-Petersburg). 2019;23(3):10–20 (In Russ.)].
  16. Bellomo R., Ronco C., Kellum J., et al. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care. 2004;8:R204–12.
  17. Levey A., Eckardt K., Tsukamoto Y., et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005;67:2089–100.
  18. Mehta R., Kellum J., Shah S., et al. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care. 2007;11:R31.
  19. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012;2:1–138.
  20. Kellum J., Lameire N. KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care. 2013;17(1):204.
  21. Slocum N., Grossman P., Moscucci M., et al. The changing definition of contrast-induced nephropathy and its clinical implications: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Am. Heart J. 2012;163(5):829–34.
  22. Weisbord S., Mor M., Resnick A., et al. Incidence and outcomes of contrast-induced AKI following computed tomography. Clin. J. Am. Soc. Nephrol. 2008;3:1274–81.
  23. Pyxaras S., Zhang Y., Wolf A., et al. Effect of Varying Definitions of Contrast-Induced Acute Kidney Injury and Left Ventricular Ejection Fraction on One-Year Mortality in Patients Having Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2015;116(3):426–30.
  24. Budano C., Levis M., D’Amico M., et al. Impact of contrast-induced acute kidney injury definition on clinical outcomes. Am. Heart J. 2011;161:963–71.
  25. Azzouz M., Romsing J., Thomsen H. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients. Eur. J. Radiol. 2014;83:886–92.
  26. Thomsen H., Morcos S. Risk of iodinated contrast material-induced nephropathy with intravenous administration. Eur. Radiol. 2009;19:891–7.
  27. Lakhal K., Ehrmann S., Chaari A., et al. Acute Kidney Injury Network definition of contrast-induced nephropathy in the critically ill: incidence and outcome. J. Crit. Care. 2011;26:593–99.
  28. Garfinkle M., Stewart S., Basi R. Incidence of CT contrast agent-induced nephropathy: toward a more accurate estimation. AJR. Am. J. Roentgenol. 2015;204:1146–51.
  29. Thomas M., Blaine C., Dawnay A., et al. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87:62–73.
  30. Modi K., Padala S., Gupta M. Contrast-Induced Nephropathy. 2023 Jul 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023 Jan. [PMID: 28846220].
  31. Hiremath S., Akbari A., Wells G., Chow B. Are iso-osmolar, as compared to low-osmolar, contrast media cost-effective in patients undergoing cardiac catheterization? An economic analysis. Int. Urol. Nephrol. 2018;50(8): 1477–82.
  32. Institute of Medicine (US) Committee on Quality of Health Care in America. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington (DC): National Academies Press (US); 2001. [PMID: 25057539].
  33. Subramaniam R., Suarez-Cuervo C., Wilson R., et al. Effectiveness of Prevention Strategies for Contrast-Induced Nephropathy: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016;164(6):406–16.
  34. Mehta R., Pascual M., Soroko S., et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613–21.
  35. Modi K., Padala S., Gupta M. Contrast-Induced Nephropathy. 2023 Jul 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023 Jan. [PMID: 28846220].
  36. Kanbay M., Solak Y., Afsar B., et al. Serum uric acid and risk for acute kidney injury following contrast: an evaluation of epidemiology, clinical trials, and potential mechanisms. Angiology. 2017;68:132–44.
  37. Миронова О.Ю., Деев А.Д., Лакотка П.Г., Фомин В.В. Анемия как фактор риска развития контраст-ассоциированного острого повреждения почек. Тер. архив. 2020;12(92):48–52. [Mironova O.I., Deev A.D., Lakotka P.G., Fomin V.V. Anemia as a risk factor of contrast-associated acute kidney injury. Ter. Arkh. 2020;12(92):48–52(In Russ.)].
  38. Bei W., Duan C., Chen J., et al. Remote Ischemic Conditioning for Preventing Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Interventions/ Coronary Angiography: A Meta-Analysis of Randomized Controlled Trials. J. Cardiovasc. Pharmacol. Ther. 2016;21(1):53–63.
  39. Eng J., Wilson R., Subramaniam R., et al. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann. Intern. Med. 2016;164:417–24.
  40. McDonald J., McDonald R., Williamson E., Kallmes D. Is intravenous administration of iodixanol associated with increased risk of acute kidney injury, dialysis, or mortality? Propensity Score-adjusted study. Radiology. 2017:285: 414–24.
  41. Kooiman J., Seth M., Share D., et al. The association between contrast dose and renal complications post-PCI across the continuum of procedural estimated risk. PLoS One. 2014;9:e90233.
  42. Yuan Y., Qiu H., Hu X., et al. Predictive value of inflammatory factors on contrast-induced acute kidney injury in patients who underwent an emergency percutaneous coronary intervention. Clin. Cardiol. 2017;40(9):719–25.
  43. Chen S., Zhang J., Yei F., et al. Clinical outcomes of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention: a prospective, multicenter, randomized study to analyze the effect of hydration and acetylcysteine. Int. J. Cardiol. 2008;126:407–13.
  44. Kane G., Doyle B., Lerman A., et al. Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J. Am. Coll. Cardiol. 2008;51:89–90.
  45. Batra M., Sial J., Kumar R., et al. Contrast-induced acute kidney injury: the sin of primary percutaneous coronary intervention. Pak. Heart J. 2018;51:172–78.
  46. Tsai T., Patel U., Chang T., et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC. Cardiovasc. Interv. 2014;7:1–9.
  47. Liu Y.H., Liu Y., Zhou Y.L., et al. Comparison of different risk scores for predicting contrast induced nephropathy and outcomes after primary percutaneous coronary intervention in patients with ST elevation myocardial infarction. Am. J. Cardiol. 2016;117:1896–903.
  48. Dangas G., Iakovou I., Nikolsky E., et al. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am. J. Cardiol. 2005;95:13–9.
  49. Chong E., Poh K., Lu Q., et al. Comparison of combination therapy of high-dose oral N-acetylcysteine and intravenous sodium bicarbonate hydration with individual therapies in the reduction of Contrast-induced Nephropathy during Cardiac Catheterisation and Percutaneous Coronary Intervention (CONTRAST): a multi-centre, randomised, controlled trial. Int. J. Cardiol. 2015;201:237–42.
  50. Jo S., Hahn J., Lee S., et al. High-dose atorvastatin for preventing contrast-induced nephropathy in primary percutaneous coronary intervention. J. Cardiovasc. Med. 2015;16:213–19.
  51. Nawa T., Nishigaki K., Kinomura Y., et al. Continuous intravenous infusion of nicorandil for 4 hours before and 24 hours after percutaneous coronary intervention protects against contrast-induced nephropathy in patients with poor renal function. Int. J. Cardiol. 2015;195:228–34.
  52. Firouzi A., Maadani M., Kiani R., et al. Intravenous magnesium sulfate: new method in prevention of contrast-induced nephropathy in primary percutaneous coronary intervention. Int. Urol. Nephrol. 2015;47:521–25.
  53. Mehran R., Aymong E., Nikolsky E., et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J. Am. Coll. Cardiol. 2004;44:1393–99.
  54. Abellás-Sequeiros R., Raposeiras-Roubin S., Abu-Assi E., et al. Mehran contrast nephropathy risk score: is it still useful 10 years later? J. Cardiol. 2016;67:262–67.
  55. Kurtul A., Yarlioglues M., Duran M., Murat S. Association of neutrophil-to-lymphocyte ratio with contrast-induced nephropathy in patients with non-ST-elevation acute coronary syndrome treated with percutaneous coronary intervention. Heart Lung Circ. 2016;25:683–90.
  56. Kurtul A., Duran M. Fragmented QRS complex predicts contrast‐induced nephropathy and in‐hospital mortality after primary percutaneous coronary intervention in patients with ST‐segment elevation myocardial infarction. Clin. Cardiol. 2017;40:235–42.
  57. Goussot S., Mousson C., Guenancia C., et al. N-terminal fragment of pro B-type natriuretic peptide as a marker of contrast-induced nephropathy after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Am. J. Cardiol. 2015;116:865–71.
  58. Kurtul A., Yarlioglues M., Duran M. Predictive value of CHA2DS2-VASC score for contrast-induced nephropathy after percutaneous coronary intervention for acute coronary syndrome. Am. J. Cardiol. 2017;119:819–25.
  59. Ozturk D., Celik O., Erturk M., et al. Utility of the logistic clinical syntax score in the prediction of contrast-induced nephropathy after primary percutaneous coronary intervention. Can. J. Cardiol. 2016;32:240–6.
  60. Hossain M., Costanzo E., Cosentino J., et al. Contrast-induced nephropathy: Pathophysiology, risk factors, and prevention. Saudi J. Kidney Dis. Transpl. 2018;29(1):1–9.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies