Quality of life in diabetic patients with chronic kidney disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Progressive kidney damage in diabetes is one of the most significant risk factors for early disability and death. Chronic kidney disease (CKD) makes a significant contribution to the decreased quality of life of patients with diabetes mellitus (DM). The use of both general questionnaires (SF-36, SF-12 and EQ-5D) and numerous diabetes-specific ones reveals a pronounced decrease in the quality of life (QOL) of patients against the background of worsening CKD, in particular when reaching 3b–5 stages. The main pharmacological approaches recommended for the management of diabetic patients with CKD include such groups of drugs as renin-angiotensin-aldosterone system (RAAS) inhibitors, sodium-glucose cotransporter type 2 inhibitors (SGLT-2), as well as finerenone, a non-steroidal selective antagonist of mineralocorticoids. receptors. Studies of the dynamics of quality of life in diabetic patients with kidney pathology against the background of the use of RAAS inhibitors reveal its significant improvement in various patient populations. SGLT-2 inhibitors cause the most pronounced improvement in quality of life in patients with chronic heart failure, both with and without diabetes. Numerous clinical studies on the effectiveness of finerenone have demonstrated a significant improvement in renal function and a slowdown in the CKD progression, which can prevent patient disability, the onset of end-stage renal failure, concomitant limitations in physical functioning, psycho-emotional disorders, dependence on others and reduce the burden of the disease in general. These factors underlie the ability of finerenone to improve the quality of life of diabetic patients with CKD, having a positive effect on the duration of a full life.

Full Text

Restricted Access

About the authors

Olga I. Butranova

Peoples' Friendship University of Russia named after Patrice Lumumba

Author for correspondence.
Email: butranova-oi@rudn.ru
ORCID iD: 0000-0001-7729-2169

Cand.Sci. (Med.), Associate Professor of the Department of General and Clinical Pharmacology, Medical Institute

Russian Federation, Moscow

Sergey K. Zyryanov

Peoples' Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital № 24 of the Moscow Healthcare Department

Email: zyryanov-sk@rudn.university
ORCID iD: 0000-0002-6348-6867

Dr.Sci. (Med.), Professor, Head of the Department of General and Clinical Pharmacology, Medical Institute, Peoples' Friendship University of Russia named after Patrice Lumumba; Deputy Chief Physician for Therapy, City Clinical Hospital No. 24 of the Moscow Healthcare Department

Russian Federation, Moscow; Moscow

References

  1. Baek J.H., Lee W.J., Lee B.W., et al. Age at Diagnosis and the Risk of Diabetic Nephropathy in Young Patients with Type 1 Diabetes Mellitus. Diab. Metab. J. 2021;45(1):46–54. doi: 10.4093/dmj.2019.0134.
  2. Farah R.I., Al-Sabbagh M.Q., Momani M.S., et al. Diabetic kidney disease in patients with type 2 diabetes mellitus: a cross-sectional study. BMC. Nephrol. 2021;22(1):223. Published 2021 Jun 16. doi: 10.1186/s12882-021-02429-4.
  3. Rodriquez I.M., O'Sullivan K.L. Youth-Onset Type 2 Diabetes: Burden of Complications and Socioeconomic Cost. Curr. Diab. Rep. 2023;23(5):59–67. doi: 10.1007/s11892-023-01501-7.
  4. Lawrence J.M., Divers J., Isom S., et al. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001-2017 [published correction appears in JAMA. 2021;326(13):1331. JAMA. 2021;326(8):717–27. doi: 10.1001/jama.2021.11165.
  5. Barker M.M., Zaccardi F., Brady E.M., et al. Age at diagnosis of type 2 diabetes and cardiovascular risk factor profile: A pooled analysis. World J. Diab. 2022;13(3):260–71. doi: 10.4239/wjd.v13.i3.260.
  6. Дедов И.И., Шестакова М.В., Викулова О.К. и др. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010 – 2022 гг. Сахарный диабет. 2023;26(2):104–23. https://doi.org/10.14341/DM13035. [Dedov I.I., Shestakova M.V., Vikulova O.K., et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diab. Mellit. 2023;26(2):104–23 (In Russ.)].
  7. Steen Carlsson K., Faurby M., Nilsson K., Wolden M.L. Atherosclerotic Cardiovascular Disease in Type 2 Diabetes: A Retrospective, Observational Study of Economic and Clinical Burden in Sweden. Diab. Ther. 2023;14(8):1357–72. doi: 10.1007/s13300-023-01430-4.
  8. Hong Y.S., Kim H., Zhao D., Cho A. Chronic Kidney Disease on Health-Related Quality of Life in Patients with Diabetes Mellitus: A National Representative Study. J. Clin. Med. 2021;10(20):4639. Published 2021 Oct 10. doi: 10.3390/jcm10204639.
  9. Senanayake S., Gunawardena N., Palihawadana P., et al. Symptom burden in chronic kidney disease; a population based cross sectional study. BMC. Nephrol. 2017;18(1):228. Published 2017 Jul 10. doi: 10.1186/s12882-017-0638-y.
  10. Ware J.E., Jr, Shebourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6): 473–83
  11. Kathe N, Hayes C.J., Bhandari N.R., Payakachat N. Assessment of Reliability and Validity of SF-12v2 among a Diabetic Population. Value Health. 2018;21(4):432–40. doi: 10.1016/j.jval.2017.09.007.
  12. EuroQol Group EuroQol: a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(3):199–208.
  13. Jankowska A., Golicki D. EQ-5D-5L-based quality of life normative data for patients with self-reported diabetes in Poland. PLoS One. 2021;16(9):e0257998. Published 2021 Sep 29. doi: 10.1371/journal.pone.0257998.
  14. Safieddine M., Bruneau L., Soulaimana I., et al. Quality of life assessment in diabetic patients: validity of the creole version of the EQ-5D-5L in Reunion Island. Front. Psychol. 2023;14:1185316. Published 2023 Jun 15. doi: 10.3389/fpsyg.2023.1185316.
  15. Gebremariam G.T., Biratu S., Alemayehu M., et al. Health-related quality of life of patients with type 2 diabetes mellitus at a tertiary care hospital in Ethiopia. PLoS One. 2022;17(2):e0264199. Published 2022 Feb 18. doi: 10.1371/journal.pone.0264199.
  16. Oluchi S.E., Manaf R.A., Ismail S., et al. Health Related Quality of Life Measurements for Diabetes: A Systematic Review. Int. J. Environ. Res. Public. Health. 2021;18(17):9245. Published 2021 Sep 1. doi: 10.3390/ijerph18179245.
  17. Bujang M.A., Adnan T.H., Hatta N.K.B.H., et al. A revised version of diabetes quality of life instrument maintaining domains for satisfaction, impact, and worry. J. Diab. Res. 2018;2018:5804687. doi: 10.1155/2018/5804687.
  18. Shen W., Kotsanos J.G., Huster W.J., et al. Development and validation of the Diabetes Quality of Life Clinical Trial Questionnaire. Med. Care. 1999;37(4 Suppl. Lilly):AS45-AS66. doi: 10.1097/00005650-199904001-00008.
  19. Bradley C., Todd C., Gorton T., et al. The development of an individualized questionnaire measure of perceived impact of diabetes on quality of life: the ADDQoL. Qual. Life Res. 1999;8(1–2):79–91. doi: 10.1023/a:1026485130100.
  20. Ishii H., Kim H.R., Crawford B. The revalidation of the diabetes treatment-related quality-of-life (DTR-QOL) questionnaire in Japan. Diab. Int. 2018;10(2):93–101. Published 2018 Aug 28. doi: 10.1007/s13340-018-0371-1.
  21. Sato E., Suzukamo Y., Miyashita M., Kazuma K. Development of a diabetes diet-related quality-of-life scale. Diab. Care. 2004;27(6):1271–5. doi: 10.2337/diacare.27.6.1271.
  22. Sato E., Ochiai R., Shibayama T., et al. Reliability and validity of revised and short form versions of diabetes diet-related quality of life scale. Diab. Int. 2016;8(2):181–92. Published 2016 Nov 4. doi: 10.1007/s13340-016-0291-x.
  23. Boyer J.G., Earp J.A. The development of an instrument for assessing the quality of life of people with diabetes. Diabetes-39. Med. Care. 1997;35(5):440–53. doi: 10.1097/00005650-199705000-00003.
  24. Zhou T., Guan H., Wang L., et al. Health-Related Quality of Life in Patients With Different Diseases Measured With the EQ-5D-5L: A Systematic Review. Front. Public. Health. 2021;9:675523. Published 2021 Jun 29. doi: 10.3389/fpubh.2021.675523.
  25. Jankowska A., Golicki D. EQ-5D-5L-based quality of life normative data for patients with self-reported diabetes in Poland. PLoS One. 2021;16(9):e0257998. Published 2021 Sep 29. doi: 10.1371/journal.pone.0257998.
  26. Tian S., Wang R., Qian M., et al. The association between diabetes mellitus and HRQoL of older people in Shanghai. BMC. Geriatr. 2021;21(1):626. Published 2021 Nov 3. doi: 10.1186/s12877-021-02590-3.
  27. Manjunath K., Christopher P., Gopichandran V., et al. Quality of life of a patient with type 2 diabetes: a cross-sectional study in rural South India. J. Family Med. Prim. Care. 2014;3(4):396–9. doi: 10.4103/2249-4863.148124.
  28. Ferreira P.L., Morais C., Pimenta R., et al. Empowerment and Knowledge as Determinants for Quality of Life: A Contribution to a Better Type 2 Diabetes Self-Management. Int. J. Environ. Res. Public. Health. 2023;20(5):4544. Published 2023 Mar 3. doi: 10.3390/ijerph20054544.
  29. Alowayesh M.S., Aljunid S.M., Aladsani A., et al. Health-related quality of life of Kuwaiti adults living with diabetes. Front. Public. Health. 2023;11:1085928. Published 2023 Mar 23. doi: 10.3389/fpubh.2023.1085928.
  30. Wong E.L.Y., Xu R.H., Cheung A.W.L. Measurement of health-related quality of life in patients with diabetes mellitus using EQ-5D-5L in Hong Kong, China. Qual. Life Res. 2020;29(7):1913–21. doi: 10.1007/s11136-020-02462-0.
  31. Jeong M. Predictors of Health-Related Quality of Life in Korean Adults with Diabetes Mellitus. Int. J. Environ. Res. Public. Health. 2020;17(23):9058. Published 2020 Dec 4. doi: 10.3390/ijerph17239058.
  32. Zimbudzi E., Lo C., Ranasinha S., et al. Predictors of Health-Related Quality of Life in Patients with Co-Morbid Diabetes and Chronic Kidney Disease. PLoS. One. 2016;11(12):e0168491. Published 2016 Dec 19. doi: 10.1371/journal.pone.0168491.
  33. Krishnan A., Teixeira-Pinto A., Lim W.H., et al. Health-Related Quality of Life in People Across the Spectrum of CKD. Kidney Int. Rep. 2020;5(12):2264–74. Published 2020 Oct 3. doi: 10.1016/j.ekir.2020.09.028.
  34. Chen L., Wang J., Huang X., et al. Association between diabetes mellitus and health-related quality of life among patients with chronic kidney disease: results from the Chinese Cohort Study of Chronic Kidney Disease (C-STRIDE). Health Qual. Life Outcomes. 2020;18(1):266. Published 2020 Aug 3. doi: 10.1186/s12955-020-01519-5.
  35. Zimbudzi E., Lo C., Ranasinha S., et al. Health-related quality of life among patients with comorbid diabetes and kidney disease attending a codesigned integrated model of care: a longitudinal study. BMJ. Open Diab. Res. Care. 2020;8(1):e000842. doi: 10.1136/bmjdrc-2019-000842.
  36. https://diabetesjournals.org/care/article/46/Supplement_1/S191/148040/11-Chronic-Kidney-Disease-and-Risk-Management.
  37. https://kdigo.org/wp-content/uploads/2022/10/KDIGO-2022-Clinical-Practice-Guideline-for-Diabetes-Management-in-CKD.pdf.
  38. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. «Алгоритмы специализированной медицинской помощи больным сахарным диабетом». Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. Сахарный диабет. 2021;24(Suppl. 1):1–148. https://doi.org/10.14341/DM12802. [Dedov I.I., Shestakova M.V., Mayorov A.Yu., et al. Standards of specialized diabetes care. Ed. by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 10th edition. Diab. Mell. 2021;24(Suppl. 1):1–148 (In Russ.)].
  39. Shi Q., Nong K., Vandvik P.O., et al. Benefits and harms of drug treatment for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2023;381:e074068. Published 2023 Apr 6. doi: 10.1136/bmj-2022-074068.
  40. Smits K.P.J., Sidorenkov G., Kleefstra N., et al. Is guideline-adherent prescribing associated with quality of life in patients with type 2 diabetes? PLoS One. 2018;13(8):e0202319. Published 2018 Aug 16. doi: 10.1371/journal.pone.0202319.
  41. Adarkwah C.C., Gandjour A., Akkerman M., Evers S.M. Cost-effectiveness of angiotensin-converting enzyme inhibitors for the prevention of diabetic nephropathy in The Netherlands--a Markov model. PLoS One. 2011;6(10):e26139. doi: 10.1371/journal.pone.0026139.
  42. Wu B., Zhang S., Lin H., Mou S. Prevention of renal failure in Chinese patients with newly diagnosed type 2 diabetes: A cost-effectiveness analysis. J. Diab. Invest. 2018;9(1):152–61. doi: 10.1111/jdi.12653.
  43. Bhardwaj R.K., Kazal H.L., Kohli K., et al. Effects of antihypertensive agents on the quality of life in diabetic hypertensive patients: A prospective study. Perspect. Clin. Res. 2022;13(3):137–44. doi: 10.4103/picr.PICR_15_20.
  44. Pattanaprateep O., Ingsathit A., McEvoy M., et al. Cost-Effectiveness Analysis of Renin-Angiotensin Aldosterone System Blockade in Progression of Chronic Kidney Disease. Value Health Reg. Issues. 2018;15:155–60. doi: 10.1016/j.vhri.2017.12.011.
  45. Grandy S., Langkilde A.M., Sugg J.E., et al. Health-related quality of life (EQ-5D) among type 2 diabetes mellitus patients treated with dapagliflozin over 2 years. Int. J. Clin. Pract. 2014;68(4):486–94. doi: 10.1111/ijcp.12341.
  46. Ishii H., Nakajima H., Kamei N., et al. Quality-of-Life Comparison of Dapagliflozin Versus Dipeptidyl Peptidase 4 Inhibitors in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial (J-BOND Study). Diab. Ther. 2020;11:2959–77. https://doi.org/10.1007/s13300-020-00941-8.
  47. Peikert A., Chandra A., Kosiborod M.N., et al. Association of Dapagliflozin vs Placebo With Individual Kansas City Cardiomyopathy Questionnaire Components in Patients With Heart Failure With Mildly Reduced or Preserved Ejection Fraction: A Secondary Analysis of the DELIVER Trial [published online ahead of print, 2023 May 20]. JAMA. Cardiol. 2023;e231342. doi: 10.1001/jamacardio.2023.1342.
  48. Pei H., Wang W., Zhao D., et al. The use of a novel non-steroidal mineralocorticoid receptor antagonist finerenone for the treatment of chronic heart failure: a systematic review and meta-analysis. Medicine. 2018;97(16):e0254.
  49. Filippatos G., Anker S.D., Pitt B., et al. Finerenone efficacy in patients with chronic kidney disease, type 2 diabetes and atherosclerotic cardiovascular disease. Eur. Heart J. Cardiovasc. Pharmacother. 2022;9(1):85–93. doi: 10.1093/ehjcvp/pvac054.
  50. Zhang M.Z., Bao W., Zheng Q.Y., et al. Efficacy and Safety of Finerenone in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Pharmacol. 2022;13:819327. Published 2022 Feb 7. doi: 10.3389/fphar.2022.819327.
  51. Jyotsna F., Mahfooz K., Patel T., et al. A Systematic Review and Meta-Analysis on the Efficacy and Safety of Finerenone Therapy in Patients with Cardiovascular and Chronic Kidney Diseases in Type 2 Diabetes Mellitus. Cureus. 2023;15(7):e41746. Published 2023 Jul 11. doi: 10.7759/cureus.41746.
  52. Jiang X., Zhang Z., Li C., et al. Efficacy and Safety of Non-Steroidal Mineralocorticoid Receptor Antagonists in Patients With Chronic Kidney Disease and Type 2 Diabetes: A Systematic Review Incorporating an Indirect Comparisons Meta-Analysis. Front. Pharmacol. 2022;13:896947. Published 2022 Jun 16. doi: 10.3389/fphar.2022.896947.
  53. Fu Z., Geng X., Chi K., et al. Efficacy and safety of finerenone in patients with chronic kidney disease: a systematic review with meta-analysis and trial sequential analysis. Ann. Palliat. Med. 2021;10(7):7428–39. doi: 10.21037/apm-21-763.
  54. Bao W., Zhang M., Li N., et al. Efficacy and safety of finerenone in chronic kidney disease associated with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. Eur. J. Clin. Pharmacol. 2022;78(12):1877–87. doi: 10.1007/s00228-022-03408-w.
  55. Yang P., Shen W, Chen X, et al. Comparative efficacy and safety of mineralocorticoid receptor antagonists in heart failure: a network meta-analysis of randomized controlled trials. Heart Fail. Rev. 2019;24(5):637–46.
  56. Bakris G.L., Agarwal R., Anker S.D., et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020;383(23):2219–29. doi: 10.1056/NEJMoa2025845.
  57. Pitt B., Filippatos G., Agarwal R., et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021;385(24):2252–63. doi: 10.1056/NEJMoa2110956.
  58. Agarwal R., Filippatos G., Pitt B., et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis [published correction appears in Eur. Heart J. 2022 May 21;43(20):1989. Eur. Heart J. 2022;43(6):474–84. doi: 10.1093/eurheartj/ehab777.
  59. Filippatos G., Anker S.D., Böhm M., et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur. Heart J. 2016;37(27):2105–14. doi: 10.1093/eurheartj/ehw132.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies