СОВРЕМЕННЫЕ МЕТОДЫ ЛЕЧЕНИЯ ИШЕМИЧЕСКОГО/ РЕПЕРФУЗИОННОГО ПОВРЕЖДЕНИЯ ПОЧЕЧНОГО АЛЛОТРАНСПЛАНТАТА


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Ишемическое и реперфузионное повреждения являются сложным многофакторным процессом, повреждающим почечный трансплантат. Понимание патогенетических механизмов ишемического и реперфузионного повреждения позволяет применять различные биологические агенты для ослабления данного патологического процесса. Однако, к сожалению, использование большинства биологических агентов изучается пока еще в экспериментальных условиях и не применяется в широкой клинической практике. Цель данного обзора - показать две основные стратегии (пред- и посттрансплантационную), грамотное использование которых позволяет снижать тяжесть ишемического и реперфузионного повреждения.

Полный текст

Доступ закрыт

Об авторах

А. В Ватазин

ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»

руководитель отдела трансплантологии, нефрологии и хирургической гемокоррекции, заведующий кафедрой трансплантологии, нефрологии и искусственных органов д.м.н., профессор Москва

И. В Нестеренко

ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»

профессор кафедры трансплантологии, нефрологии и искусственных органов д.м.н. Москва

А. Б Зулькарнаев

ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»

доцент кафедры трансплантологии, нефрологии и искусственных органов к.м.н. Москва

Н. Л Шахов

ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»

аспирант кафедры трансплантологии, нефрологии и искусственных органов NlCK-GRAFT@RAMBLER.RU

Список литературы

  1. Jamieson R.W., Friend P.J. Organ reperfusion and preservation // Front. Biosci. - 2008. - Vol. 13. - P. 221-235.
  2. Bouma H.R., Ketelaar M.E., Yard B.A., et al. AMP-activated protein kinase as a target for preconditioning in transplantation medicine // Transplantation. - 2010. - Vol. 90(4). - P. 353-358.
  3. Vassalli G., Milano G., Moccetti T. Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation // J. Transplant. - 2012. - Vol. 2012. - P. 928-954.
  4. Lutz J., Thürmel K., Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation// J. Inflamm. (Lond). - 2010. -Vol. 28(7). - P. 27.
  5. Schnuelle P., Gottmann U., Hoeger S. et al. Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial // JAMA. - 2009. - Vol. 302. - P. 1067-1075.
  6. Benck U., Hoeger S., Brinkkoetter P.T. et al. Effects of donor pre-treatment with dopamine on survival after heart transplantation: a cohort study of heart transplant recipients nested in a randomized controlled multicenter trial // J. Am. Coll. Cardiol. - 2011. - Vol. 58(17). - P. 1768-1777.
  7. Moers C., Smits J.M., Maathuis M.H. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation // N. Engl. J. Med. - 2009. - Vol. 360. - P. 7-19.
  8. Vaziri N., Thuillier R., Favreau F.D. et al. Analysis of machine perfusion benefits in kidney grafts: a preclinical study // J. Transl. Med. - 2011. - Vol. 9. - P. 15.
  9. Olschewski P., Gass P., Ariyakhagorn V. et al. The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers // Cryobiology. - 2010. - Vol. 60(3). - P. 337-343.
  10. La Manna G., Conte D., Cappuccilli M.L. et al. An in vivo autotransplant model of renal preservation: cold storage versus machine perfusion in the prevention of ischemia/reperfusion injury // Artif. Organs. - 2009. - Vol. 33(7). - P. 565-570.
  11. Bathini V., McGregor T., McAlister V.C. et al. Renal perfusion pump vs cold storage for donation after cardiac death kidneys: a systematic review // J. Urol. - 2013. - Vol. 189(6). - P. 2214-2220.
  12. Vogel T., Brockmann J.G., Coussios C. et. al. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury // Transplant. Rev. (Orlando). - 2012. - Vol. 26(2). - P. 156-162.
  13. Thuillier R., Allain G., Celhay O. et al. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors // J. Surg. Res. - 2013. - Vol. 184(2). -P. 1174-1181.
  14. Furuichi K., Wada T., Kaneko S. et al. Roles of chemokines in renal ischemia/reperfusion injury // Front. Biosci. - 2008. - Vol. 13. - P. 4021-4028.
  15. Chung A.C., Lan H.Y. Chemokines in renal injury // J. Am. Soc. Nephrol. - 2011. - Vol. 22(5). - P. 802-809.
  16. Lo D.J., Weaver T.A., Kleiner D.E. et al. Chemokines and their receptors in human renal allotransplantation // Transplantation. - 2011. - Vol. 91(1). -P. 70-77.
  17. Stroo I., Stokman G., Gwen J. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase // Int. Immunol. - 2010. - Vol. 22(6). - P. 433-442.
  18. Jaswal J.S., Gandhi M., Finegan B.A. et al. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardio protection in hearts stressed by antecedent ischemia by altering glucose utilization // Am. J. Physiol. Heart Circ. Physiol. - 2007. - Vol. 293. - P. H1107-1114.
  19. Ashraf M., Ebner M., Wallner C. et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury // Cell Commun. Signal. - 2014. - Vol. 12. - P. 6. клиническая нефрология 4 - 2014
  20. Kanellis J., Ma F.Y., Kandane-Rathnayake R. et al. JNK signalling in human and experimental renal ischaemia/reperfusion injury // Nephrol. Dial. Transplant. - 2010. - Vol. 25(9). - P. 2898-2908.
  21. Schenk A.D., Rosenblum J.M., Fairchild R.L. Chemokine-Directed Strategies to Attenuate Allograft Rejection // Clin. Lab. Med. - 2008. - Vol. 28(3). -P. 441-447.
  22. Furuichi K., Gao J.L., Horuk R. et al. Chemokine Receptor CCR1 Regulates Inflammatory Cell Infiltration after Renal Ischemia-Reperfusion Injury. (ed) // J. Immunol. - 2008. - Vol. 181(12). - P. 8670-8676.
  23. Bennett L., Fox J., Signoret N. Mechanisms regulating chemokine receptor activity // Immunology. - 2011. - Vol. 134(3). - P. 246-256.
  24. Blanchet X., Langer M., Weber C. et al. Touch of Chemokines // Front. Immunol. - 2012. - Vol. 3. - P. 175.
  25. Wanderer A.A. Ischemia-reperfusion syndromes: biochemical and immunologic rationale for IL-1 targeted therapy // Clin. Immunol. - 2008. - Vol. 128. -P. 127-132.
  26. Dinarello C.A., Simon A., van der Meer J.W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases // Nat. Rev. Drug Discovery. - 2012. - Vol. 11(8). - P. 633-652.
  27. Rusai K., Huang H., Sayed N. et. al. Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury // Transpl. Int. - 2008. - Vol. 21. - P. 572-580.
  28. Wanderer A.A. Rationale and timeliness for IL-1beta-targeted therapy to reduce allogeneic organ injury at procurement and to diminish risk of rejection after transplantation// Clin. Transplant. - 2010. - Vol. 24(3). - P. 307-311.
  29. Rider P., Carmi Y., Guttman O. et al. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation // J. Immunol. - 2011. - Vol. 187(9). - P. 4835-4843.
  30. Camporeale A., Poli V. IL-6, IL-17 and STAT3: a holy trinity in autoimmunity? // Front. Biosci. - 2012. - Vol. 17. - P. 2306-2326.
  31. Nechemia-Arbely Y., Barkan D., Pizov G. et al. IL-6/IL- 6R axis plays a critical role in acute kidney injury // J. Am. Soc. Nephrol. - 2008. - Vol. 19(6). - P. 1106-1115.
  32. Patel N.S., Chatterjee P.K., Di Paola R. et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/ reperfusion // J. Pharmacol. Exp. Ther. - 2005. - Vol. 312(3). - P. 1170-1178.
  33. Chen J., Hartono J.R., John R. et al. Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4 // Kidney Int. - 2011. - Vol. 80(5). - P. 504-515.
  34. Saraiva M., O'Garra A. The regulation of IL-10 production by immune cells // Nat. Rev. Immunol. - 2010. - Vol. 10(3). - P. 170-181.
  35. Gautam S., Karen M., Dan B. et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age // J. Experim. Gerontol. -2013. - Vol. 48(2). - P. 128-135.
  36. Hammer M., Mages J. Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10 // Eur. J. Immunol. - 2010. - Vol. 35(10). -P. 2991-3001.
  37. Lawson C., Wolf S. ICAM-1 signaling in endothelial cells // Pharmacol. Rep. - 2009. - Vol. 61(1). - P. 22-32.
  38. Marwa E., Sabbahy and Vishal S. Ischemic kidney injury and mechanisms of tissue repair // Wiley Interdiscip. Rev. Syst. Biol. Med. - 2011. - Vol. 3(5). -P. 606-618.
  39. Kalogeris T., Baines C.P., Krenz M. et al. Cell Biology of Ischemia / Reperfusion Injury // Int. Rev. Cell Mol. Biol. - 2012. - Vol. 298. -P. 229-317.
  40. Vincenti F., Mendez R., Pescovitz M. et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal вопросы трансплантологии transplantation // Am. J. Transplant. - 2007. - Vol. 7. - P. 1770-1777.
  41. Goto R., Issa F., Heidt S. et al. Ischemia-Reperfusion Injury Accelerates Human Antibody-Mediated Transplant Vasculopathy // Transplantation. -2013. - Vol. 96(2). - P. 139-145.
  42. Beiras-Fernandez A., Chappell D., Hammer C. et al. Impact of polyclonal antithymocyte globulins on the expression of adhesion and inflammation molecules after ischemia-reperfusion injury // Transpl. Immunol. - 2009. - Vol. 20(4). - P. 224-228.
  43. Latanich C.A., Toledo-Pereyra L.H. Searching for NF-kappaB-based treatments of ischemia reperfusion injury // J. Invest. Surg. - 2009. - Vol. 22. - P. 301-315.
  44. Gu J.H., Ge J.B., Li M. et al. Inhibition of NF-kB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury // Eur. J. Pharm. Sci. - 2012. - Vol. 47(4). - P. 652-660.
  45. Padrissa-Altés S., Zaouali M.A., Bartrons R. et al. Ubiquitin-proteasome system inhibitors and AMPK regulation in hepatic cold ischemia and reperfusion injury: possible mechanisms // Clin. Sci. (Lond). - 2012. - Vol. 123(2). -P. 93-98.
  46. Ahmadiasl N., Banaei S., Alihemmati A. Combination antioxidant effect of erythropoietin and melatonin on renal ischemia-reperfusion injury in rats // Iran J. Basic. Med. Sci. - 2013. - Vol. 16(12). - P. 1209-1216.
  47. Amura C.R., Renner B., Lyubchenko T. Complement Activation and Toll-Like Receptor-2 Signaling Contribute to Cytokine Production after Renal Ischemia/Reperfusion // Mol. Immunol. - 2012. - Vol. 52(3-4). -P. 249-257.
  48. Rusai K., Sollinger D., Baumann M. et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury // Pediatr. Nephrol. - 2010. - Vol. 25. -P. 853-860.
  49. Kruger B., Krick S., Dhillon N. et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation // Proc. Natl. Acad. Sci USA. - 2009. - Vol. 106. - P. 3390-3395.
  50. Jang H.R., Ko G.J., Wasowska B.A. et al. The interaction between ischemiareperfusion and immune responses in the kidney // J. Mol. Med. - 2009. - Vol. 87. - P. 859-864.
  51. Diepenhorst G.M., van Gulik T.M., Hack C.E. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies // Ann. Surg. - 2009. - Vol. 249. - P. 889-899.
  52. Zheng X., Zhang X., Feng B. et al. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury // Am. J. Pathol. - 2008. - Vol. 173. - P. 973-980.
  53. Damman J., Daha M.R., van Son W.J. et al. Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury // Am. J. Transplant. - 2011. - Vol. 11(4). -P. 660-669.
  54. Damman J., Nijboer W.N., Schuurs T.A. et al. Local renal complement C3 induction by donor brain death is associated with reduced renal allograft function after transplantation // Nephrol. Dial. Transplant. - 2011. - Vol. 26(7). - P. 2345-2354.
  55. Ferraresso M., Macor P., Valente M. et al. Posttransplant ischemiareperfusion injury in transplanted heart is prevented by a minibody to the fifth component of complement // Transplantation. - 2008. - Vol. 86. - P. 1445-1451.
  56. Woodruff T.M., Nandakumar K.S., Tedesco F. Inhibiting the C5-C5a receptor axis // Mol. Immunol. - 2011. - Vol. 48(14). - P. 1631-1642.
  57. Wang D.S., Li Y., Dou K.F. et al. Utility of adenovirus-mediated Fas ligand and bcl-2 gene transfer to modulate rat liver allograft survival // Hepatobiliary Pancreat. Dis. Int. - 2006. - Vol. 5. - P. 505-510.
  58. Yeom H.J., Koo O.J., Yang J. et al. Generation and characterization of human heme oxygenase-1 transgenic pigs // PLoS One. - 2012. - Vol. 7(10). -P. e46646.
  59. Wu J., Hecker J.G., Chiamvimonvat N. Antioxidant Enzyme Gene Transfer for Ischemic Diseases // Adv. Drug Deliv. Rev. - 2009. - Vol. 61(4). -P. 351-363.
  60. Oh Y.B., Ahn M., Lee S.M. et al. Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice // Exp. Mol. Med. - 2013. - Vol. 45. - P. e23.
  61. Lin M., Li L., Pokhrel G. et al. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis // BMC Complement Altern. Med. - 2014. - Vol. 14. - P. 19.
  62. Pereira B.J., Castro I., Burdmann E.A. et al. Effects of sirolimus alone or in combination with cyclosporine A on renal ischemia/reperfusion injury // Braz. J. Med. Biol. Res. - 2010. - Vol. 43(8). - P. 737-744.
  63. Chen G., Chen H., Wang C. et al. Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts // PLoS One. - 2012. - Vol. 7(3). - P. e33626.
  64. Kezic A., Becker J.U., Thaiss F. The Effect of mTOR-Inhibition on NF-kB Activity in Kidney Ischemia-Reperfusion Injury in Mice // Transplant. Proc. - 2013. - Vol. 45. - P. 1708-1714.
  65. Coornaert B., Carpentier I., Beyaert R. A20: central gatekeeper in inflammation and immunity // J. Biol. Chem. - 2009. - Vol. 284. - P. 8217-8221.
  66. Vereecke L., Beyaert R., van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology // Trends Immunol. - 2009. - Vol. 30(8). - P. 383-391.
  67. Lutz J., Luong le A., Strobl M. et al. The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation // J. Mol. Med. - 2008. - Vol. 86. - P. 1329-1339.
  68. Prasad A.S., Bao B., Beck F.W. et al. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-xB // Nutrition. - 2011. - Vol. 27(7-8). - P. 816-823.
  69. Xu M.Q., Yan L.N., Gou X.H. et al. Zinc finger protein A20 promotes regeneration of small-for-size liver allograft and suppresses rejection and results in a longer survival in recipient rats // J. Surg. Res. - 2009. - Vol. 152. -P. 35-45.
  70. Kunugi S., Shimizu A., Kuwahara N. et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury // Lab. Invest. - 2011. - Vol. 91(2). - P. 170-180.
  71. Tan R.J., Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases // Am. J. Physiol. Renal Physiol. - 2012. - Vol. 302(11). - P. 351-361.
  72. Lutz J., Yao Y., Song E. et al. Inhibition of matrix metalloproteinases during chronic allograft nephropathy in rats // Transplantation. - 2005. - Vol. 79. -P. 655-661.
  73. Bajwa A., Kinsey G.R., Okusa M.D. Immune Mechanisms and Novel Pharmacological Therapies of Acute Kidney Injury // Curr. Drug Targets. - 2009. - Vol. 10(12). - P. 1196-1204.
  74. Chen T.H., Liao F.T., Yang Y.C. et al. Inhibition of inducible nitric oxide synthase ameliorates myocardial ischemia/reperfusion injury - induced acute renal injury // Transplant Proc. - 2014. - Vol. 46(4). - P. 1123-1126.
  75. Guz G., Demirogullari B., Ulusu N.N. et al. Stobadine protects rat kidney against ischaemia/reperfusion injury // Clin. Exp. Pharmacol. Physiol - 2007. - Vol. 34. - P. 210-216.
  76. Yildiz F., Coban S., Terzi A. et al. Protective effects of Nigella sativa against ischemia-reperfusion injury of kidneys // Ren. Fail. - 2010. - Vol. 32(1). -P. 126-131.
  77. Sharfuddin A.A., Sandoval R.M., Berg D.T. et al. Soluble thrombomodulin protects ischemic kidneys // J. Am. Soc. Nephrol. - 2009. - Vol. 20. -P. 524-534.
  78. Zhang G., Zou X., Miao S. et al. The anti-oxidative role of Micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats // PLoS One. - 2014. - Vol. 9(3). - P. e92129.
  79. Gatti S., Bruno S., Deregibus MC. et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury // Nephrol. Dial. Transplant. - 2011. - Vol. 26(5). - P. 1474-1483.
  80. Du T., Cheng J., Zhong L. et al. The alleviation of acute and chronic kidney injury by human Wharton 's jelly-derived mesenchymal stromal cells triggered by ischemia-reperfusion injury via an endocrine mechanism // Cytotherapy. -2012. - Vol. 14(10). - P. 1215-1227.
  81. Zou X., Zhang G., Cheng Z. et al. Microvesicles derived from human Wharton 's Jelly mesenchymal stromal cells ameliorates renal ischemia-reperfusion injury in rats by suppressing CX3CL1 // Stem. Cell Res. Ther. - 2014. - Vol. 5(2). -P. 40.
  82. Kostapanos M.S., Liberopoulos E.N., Elisaf M.S. Statin pleiotropy against renal injury // J. Cardiometab. Syndr. - 2009. - Vol. 4(1). - P. E4-9.
  83. Sharyo S., Yokota-Ikeda N., Mori M. et al. Pravastatin improves renal ischemia-reperfusion injury by inhibiting the mevalonate pathway // Kidney Int. - 2008. - Vol. 74. - P. 577-584.
  84. Brunelli S.M., Waikar S.S., Bateman B.T. et al. Preoperative statin use and postoperative acute kidney injury // Am. J. Med. - 2012. - Vol. 125(12). -P. 1195-1204.
  85. Caetano A.M., Vianna Filho P.T., Castiglia Y.M. et al. Erythropoietin attenuates apoptosis after ischemia-reperfusion-induced renal injury in transiently hyperglycemic Wister rats // Transplant Proc. - 2011. - P. 43(10). -Vol. 3618-3621.
  86. Hu L., Yang C., Zhao T. et al. Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation // J. Surg. Res. - 2012. - Vol. 176(1). - P. 260-266.
  87. Ardalan M.R., Estakhri R., Hajipour B. et al. Erythropoietin ameliorates oxidative stress and tissue injury following renal ischemia/reperfusion in rat kidney and lung // Med. Princ. Pract. - 2013. - Vol. 22(1). - P. 70-74.
  88. Simmons M.N., Subramanian V., Crouzet S., et al. Alpha-melanocyte stimulating hormone analogue AP214 protects against ischemia induced acute kidney injury in a porcine surgical model // J. Urol. - 2010. - Vol. 183(4). -P. 1625-1629.
  89. Hussein A.A., El-Dken Z.H., Barakat N. et al. Renal ischaemia/reperfusion injury: possible role of aquaporins // Acta Physiol. (Oxf). - 2012. - Vol. 204(3). - P. 308-316.
  90. Chen J., Wang W., Zhang Q. et al. Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway // PLoS One. - 2013. - Vol. 8(2). - P. e56224.
  91. Yuzer H., Yuzbasioglu M.F., Ciralik H. et al. Effects of intravenous anesthetics on renal ischemia/reperfusion injury // Ren. Fail. - 2009. - Vol. 31(4). -P. 290-296.
  92. Dogan Z., Yuzbasioglu M.F., Kurutas E.B. et al. Thiopental improves renal ischemia-reperfusion injury // Ren. Fail. - 2010. - Vol. 32(3). - P. 391-395.
  93. Yuzbasioglu M.F., Aykas A., Kurutas E.B. et al. Protective effects of propofol against ischemia/reperfusion injury in rat kidneys // Ren. Fail. - 2010. - Vol. 32(5). - P. 578-583.
  94. Yang S., Chou W.P., Pei L. Effects of propofol on renal ischemia/reperfusion injury in rats // Exp. Ther. Med. - 2013. - Vol. 6(5). - P. 1177-1183.
  95. Lee Y.M., Shin J.W., Lee E.H. et al. Protective effects of propofol against hydrogen peroxide-induced oxidative stress in human kidney proximal tubular cells // Korean J. Anesthesiol. - 2012. - Vol. 63(5). - P. 441-446.
  96. Kim M., Park S.W., Kim M. et al. Isoflurane activates intestinal sphingosine kinase to protect against renal ischemia-reperfusion-induced liver and intestine injury // Anesthesiology. - 2011. - Vol. 114(2). - P. 363-373.
  97. Qin Z., Lv E., Zhan L. et al. Intravenous pretreatment with emulsified isoflurane preconditioning protects kidneys against ischemia/reperfusion injury in rats // BMC Anesthesiol. - 2014. - Vol. 14. - P. 28.
  98. Ozkan F., Senayli Y., Ozyurt H. et al. Antioxidant effects of propofol on tourniquet-induced ischemia-reperfusion injury: an experimental study // J. Surg. Res. - 2012. - Vol. 176(2). - P. 601-607.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах