Modern methods of treatment of ischemic/ reperfusion damage of renal allograft


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Ischemic and reperfusion injury is a complex, multifactorial process that damage kidney transplant. Understanding pathogenic mechanisms of ischemic and reperfusion damage allows you to apply various biological agents to reduce this damage. However, unfortunately, the application of most of biological agents is still only in the experiment and is not used in wide clinical practice. The purpose of this survey show two main strategies (pretransplantation and post-transplant), competent use of which allows to reduce the severity of ischemic and reperfusion damage.

Full Text

Restricted Access

References

  1. Jamieson R.W., Friend P.J. Organ reperfusion and preservation // Front. Biosci. - 2008. - Vol. 13. - P. 221-235.
  2. Bouma H.R., Ketelaar M.E., Yard B.A., et al. AMP-activated protein kinase as a target for preconditioning in transplantation medicine // Transplantation. - 2010. - Vol. 90(4). - P. 353-358.
  3. Vassalli G., Milano G., Moccetti T. Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation // J. Transplant. - 2012. - Vol. 2012. - P. 928-954.
  4. Lutz J., Thürmel K., Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation// J. Inflamm. (Lond). - 2010. -Vol. 28(7). - P. 27.
  5. Schnuelle P., Gottmann U., Hoeger S. et al. Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial // JAMA. - 2009. - Vol. 302. - P. 1067-1075.
  6. Benck U., Hoeger S., Brinkkoetter P.T. et al. Effects of donor pre-treatment with dopamine on survival after heart transplantation: a cohort study of heart transplant recipients nested in a randomized controlled multicenter trial // J. Am. Coll. Cardiol. - 2011. - Vol. 58(17). - P. 1768-1777.
  7. Moers C., Smits J.M., Maathuis M.H. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation // N. Engl. J. Med. - 2009. - Vol. 360. - P. 7-19.
  8. Vaziri N., Thuillier R., Favreau F.D. et al. Analysis of machine perfusion benefits in kidney grafts: a preclinical study // J. Transl. Med. - 2011. - Vol. 9. - P. 15.
  9. Olschewski P., Gass P., Ariyakhagorn V. et al. The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers // Cryobiology. - 2010. - Vol. 60(3). - P. 337-343.
  10. La Manna G., Conte D., Cappuccilli M.L. et al. An in vivo autotransplant model of renal preservation: cold storage versus machine perfusion in the prevention of ischemia/reperfusion injury // Artif. Organs. - 2009. - Vol. 33(7). - P. 565-570.
  11. Bathini V., McGregor T., McAlister V.C. et al. Renal perfusion pump vs cold storage for donation after cardiac death kidneys: a systematic review // J. Urol. - 2013. - Vol. 189(6). - P. 2214-2220.
  12. Vogel T., Brockmann J.G., Coussios C. et. al. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury // Transplant. Rev. (Orlando). - 2012. - Vol. 26(2). - P. 156-162.
  13. Thuillier R., Allain G., Celhay O. et al. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors // J. Surg. Res. - 2013. - Vol. 184(2). -P. 1174-1181.
  14. Furuichi K., Wada T., Kaneko S. et al. Roles of chemokines in renal ischemia/reperfusion injury // Front. Biosci. - 2008. - Vol. 13. - P. 4021-4028.
  15. Chung A.C., Lan H.Y. Chemokines in renal injury // J. Am. Soc. Nephrol. - 2011. - Vol. 22(5). - P. 802-809.
  16. Lo D.J., Weaver T.A., Kleiner D.E. et al. Chemokines and their receptors in human renal allotransplantation // Transplantation. - 2011. - Vol. 91(1). -P. 70-77.
  17. Stroo I., Stokman G., Gwen J. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase // Int. Immunol. - 2010. - Vol. 22(6). - P. 433-442.
  18. Jaswal J.S., Gandhi M., Finegan B.A. et al. Inhibition of p38 MAPK and AMPK restores adenosine-induced cardio protection in hearts stressed by antecedent ischemia by altering glucose utilization // Am. J. Physiol. Heart Circ. Physiol. - 2007. - Vol. 293. - P. H1107-1114.
  19. Ashraf M., Ebner M., Wallner C. et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury // Cell Commun. Signal. - 2014. - Vol. 12. - P. 6. клиническая нефрология 4 - 2014
  20. Kanellis J., Ma F.Y., Kandane-Rathnayake R. et al. JNK signalling in human and experimental renal ischaemia/reperfusion injury // Nephrol. Dial. Transplant. - 2010. - Vol. 25(9). - P. 2898-2908.
  21. Schenk A.D., Rosenblum J.M., Fairchild R.L. Chemokine-Directed Strategies to Attenuate Allograft Rejection // Clin. Lab. Med. - 2008. - Vol. 28(3). -P. 441-447.
  22. Furuichi K., Gao J.L., Horuk R. et al. Chemokine Receptor CCR1 Regulates Inflammatory Cell Infiltration after Renal Ischemia-Reperfusion Injury. (ed) // J. Immunol. - 2008. - Vol. 181(12). - P. 8670-8676.
  23. Bennett L., Fox J., Signoret N. Mechanisms regulating chemokine receptor activity // Immunology. - 2011. - Vol. 134(3). - P. 246-256.
  24. Blanchet X., Langer M., Weber C. et al. Touch of Chemokines // Front. Immunol. - 2012. - Vol. 3. - P. 175.
  25. Wanderer A.A. Ischemia-reperfusion syndromes: biochemical and immunologic rationale for IL-1 targeted therapy // Clin. Immunol. - 2008. - Vol. 128. -P. 127-132.
  26. Dinarello C.A., Simon A., van der Meer J.W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases // Nat. Rev. Drug Discovery. - 2012. - Vol. 11(8). - P. 633-652.
  27. Rusai K., Huang H., Sayed N. et. al. Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury // Transpl. Int. - 2008. - Vol. 21. - P. 572-580.
  28. Wanderer A.A. Rationale and timeliness for IL-1beta-targeted therapy to reduce allogeneic organ injury at procurement and to diminish risk of rejection after transplantation// Clin. Transplant. - 2010. - Vol. 24(3). - P. 307-311.
  29. Rider P., Carmi Y., Guttman O. et al. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation // J. Immunol. - 2011. - Vol. 187(9). - P. 4835-4843.
  30. Camporeale A., Poli V. IL-6, IL-17 and STAT3: a holy trinity in autoimmunity? // Front. Biosci. - 2012. - Vol. 17. - P. 2306-2326.
  31. Nechemia-Arbely Y., Barkan D., Pizov G. et al. IL-6/IL- 6R axis plays a critical role in acute kidney injury // J. Am. Soc. Nephrol. - 2008. - Vol. 19(6). - P. 1106-1115.
  32. Patel N.S., Chatterjee P.K., Di Paola R. et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/ reperfusion // J. Pharmacol. Exp. Ther. - 2005. - Vol. 312(3). - P. 1170-1178.
  33. Chen J., Hartono J.R., John R. et al. Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4 // Kidney Int. - 2011. - Vol. 80(5). - P. 504-515.
  34. Saraiva M., O'Garra A. The regulation of IL-10 production by immune cells // Nat. Rev. Immunol. - 2010. - Vol. 10(3). - P. 170-181.
  35. Gautam S., Karen M., Dan B. et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age // J. Experim. Gerontol. -2013. - Vol. 48(2). - P. 128-135.
  36. Hammer M., Mages J. Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10 // Eur. J. Immunol. - 2010. - Vol. 35(10). -P. 2991-3001.
  37. Lawson C., Wolf S. ICAM-1 signaling in endothelial cells // Pharmacol. Rep. - 2009. - Vol. 61(1). - P. 22-32.
  38. Marwa E., Sabbahy and Vishal S. Ischemic kidney injury and mechanisms of tissue repair // Wiley Interdiscip. Rev. Syst. Biol. Med. - 2011. - Vol. 3(5). -P. 606-618.
  39. Kalogeris T., Baines C.P., Krenz M. et al. Cell Biology of Ischemia / Reperfusion Injury // Int. Rev. Cell Mol. Biol. - 2012. - Vol. 298. -P. 229-317.
  40. Vincenti F., Mendez R., Pescovitz M. et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal вопросы трансплантологии transplantation // Am. J. Transplant. - 2007. - Vol. 7. - P. 1770-1777.
  41. Goto R., Issa F., Heidt S. et al. Ischemia-Reperfusion Injury Accelerates Human Antibody-Mediated Transplant Vasculopathy // Transplantation. -2013. - Vol. 96(2). - P. 139-145.
  42. Beiras-Fernandez A., Chappell D., Hammer C. et al. Impact of polyclonal antithymocyte globulins on the expression of adhesion and inflammation molecules after ischemia-reperfusion injury // Transpl. Immunol. - 2009. - Vol. 20(4). - P. 224-228.
  43. Latanich C.A., Toledo-Pereyra L.H. Searching for NF-kappaB-based treatments of ischemia reperfusion injury // J. Invest. Surg. - 2009. - Vol. 22. - P. 301-315.
  44. Gu J.H., Ge J.B., Li M. et al. Inhibition of NF-kB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury // Eur. J. Pharm. Sci. - 2012. - Vol. 47(4). - P. 652-660.
  45. Padrissa-Altés S., Zaouali M.A., Bartrons R. et al. Ubiquitin-proteasome system inhibitors and AMPK regulation in hepatic cold ischemia and reperfusion injury: possible mechanisms // Clin. Sci. (Lond). - 2012. - Vol. 123(2). -P. 93-98.
  46. Ahmadiasl N., Banaei S., Alihemmati A. Combination antioxidant effect of erythropoietin and melatonin on renal ischemia-reperfusion injury in rats // Iran J. Basic. Med. Sci. - 2013. - Vol. 16(12). - P. 1209-1216.
  47. Amura C.R., Renner B., Lyubchenko T. Complement Activation and Toll-Like Receptor-2 Signaling Contribute to Cytokine Production after Renal Ischemia/Reperfusion // Mol. Immunol. - 2012. - Vol. 52(3-4). -P. 249-257.
  48. Rusai K., Sollinger D., Baumann M. et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury // Pediatr. Nephrol. - 2010. - Vol. 25. -P. 853-860.
  49. Kruger B., Krick S., Dhillon N. et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation // Proc. Natl. Acad. Sci USA. - 2009. - Vol. 106. - P. 3390-3395.
  50. Jang H.R., Ko G.J., Wasowska B.A. et al. The interaction between ischemiareperfusion and immune responses in the kidney // J. Mol. Med. - 2009. - Vol. 87. - P. 859-864.
  51. Diepenhorst G.M., van Gulik T.M., Hack C.E. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies // Ann. Surg. - 2009. - Vol. 249. - P. 889-899.
  52. Zheng X., Zhang X., Feng B. et al. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury // Am. J. Pathol. - 2008. - Vol. 173. - P. 973-980.
  53. Damman J., Daha M.R., van Son W.J. et al. Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury // Am. J. Transplant. - 2011. - Vol. 11(4). -P. 660-669.
  54. Damman J., Nijboer W.N., Schuurs T.A. et al. Local renal complement C3 induction by donor brain death is associated with reduced renal allograft function after transplantation // Nephrol. Dial. Transplant. - 2011. - Vol. 26(7). - P. 2345-2354.
  55. Ferraresso M., Macor P., Valente M. et al. Posttransplant ischemiareperfusion injury in transplanted heart is prevented by a minibody to the fifth component of complement // Transplantation. - 2008. - Vol. 86. - P. 1445-1451.
  56. Woodruff T.M., Nandakumar K.S., Tedesco F. Inhibiting the C5-C5a receptor axis // Mol. Immunol. - 2011. - Vol. 48(14). - P. 1631-1642.
  57. Wang D.S., Li Y., Dou K.F. et al. Utility of adenovirus-mediated Fas ligand and bcl-2 gene transfer to modulate rat liver allograft survival // Hepatobiliary Pancreat. Dis. Int. - 2006. - Vol. 5. - P. 505-510.
  58. Yeom H.J., Koo O.J., Yang J. et al. Generation and characterization of human heme oxygenase-1 transgenic pigs // PLoS One. - 2012. - Vol. 7(10). -P. e46646.
  59. Wu J., Hecker J.G., Chiamvimonvat N. Antioxidant Enzyme Gene Transfer for Ischemic Diseases // Adv. Drug Deliv. Rev. - 2009. - Vol. 61(4). -P. 351-363.
  60. Oh Y.B., Ahn M., Lee S.M. et al. Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice // Exp. Mol. Med. - 2013. - Vol. 45. - P. e23.
  61. Lin M., Li L., Pokhrel G. et al. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis // BMC Complement Altern. Med. - 2014. - Vol. 14. - P. 19.
  62. Pereira B.J., Castro I., Burdmann E.A. et al. Effects of sirolimus alone or in combination with cyclosporine A on renal ischemia/reperfusion injury // Braz. J. Med. Biol. Res. - 2010. - Vol. 43(8). - P. 737-744.
  63. Chen G., Chen H., Wang C. et al. Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts // PLoS One. - 2012. - Vol. 7(3). - P. e33626.
  64. Kezic A., Becker J.U., Thaiss F. The Effect of mTOR-Inhibition on NF-kB Activity in Kidney Ischemia-Reperfusion Injury in Mice // Transplant. Proc. - 2013. - Vol. 45. - P. 1708-1714.
  65. Coornaert B., Carpentier I., Beyaert R. A20: central gatekeeper in inflammation and immunity // J. Biol. Chem. - 2009. - Vol. 284. - P. 8217-8221.
  66. Vereecke L., Beyaert R., van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology // Trends Immunol. - 2009. - Vol. 30(8). - P. 383-391.
  67. Lutz J., Luong le A., Strobl M. et al. The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation // J. Mol. Med. - 2008. - Vol. 86. - P. 1329-1339.
  68. Prasad A.S., Bao B., Beck F.W. et al. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-xB // Nutrition. - 2011. - Vol. 27(7-8). - P. 816-823.
  69. Xu M.Q., Yan L.N., Gou X.H. et al. Zinc finger protein A20 promotes regeneration of small-for-size liver allograft and suppresses rejection and results in a longer survival in recipient rats // J. Surg. Res. - 2009. - Vol. 152. -P. 35-45.
  70. Kunugi S., Shimizu A., Kuwahara N. et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury // Lab. Invest. - 2011. - Vol. 91(2). - P. 170-180.
  71. Tan R.J., Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases // Am. J. Physiol. Renal Physiol. - 2012. - Vol. 302(11). - P. 351-361.
  72. Lutz J., Yao Y., Song E. et al. Inhibition of matrix metalloproteinases during chronic allograft nephropathy in rats // Transplantation. - 2005. - Vol. 79. -P. 655-661.
  73. Bajwa A., Kinsey G.R., Okusa M.D. Immune Mechanisms and Novel Pharmacological Therapies of Acute Kidney Injury // Curr. Drug Targets. - 2009. - Vol. 10(12). - P. 1196-1204.
  74. Chen T.H., Liao F.T., Yang Y.C. et al. Inhibition of inducible nitric oxide synthase ameliorates myocardial ischemia/reperfusion injury - induced acute renal injury // Transplant Proc. - 2014. - Vol. 46(4). - P. 1123-1126.
  75. Guz G., Demirogullari B., Ulusu N.N. et al. Stobadine protects rat kidney against ischaemia/reperfusion injury // Clin. Exp. Pharmacol. Physiol - 2007. - Vol. 34. - P. 210-216.
  76. Yildiz F., Coban S., Terzi A. et al. Protective effects of Nigella sativa against ischemia-reperfusion injury of kidneys // Ren. Fail. - 2010. - Vol. 32(1). -P. 126-131.
  77. Sharfuddin A.A., Sandoval R.M., Berg D.T. et al. Soluble thrombomodulin protects ischemic kidneys // J. Am. Soc. Nephrol. - 2009. - Vol. 20. -P. 524-534.
  78. Zhang G., Zou X., Miao S. et al. The anti-oxidative role of Micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats // PLoS One. - 2014. - Vol. 9(3). - P. e92129.
  79. Gatti S., Bruno S., Deregibus MC. et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury // Nephrol. Dial. Transplant. - 2011. - Vol. 26(5). - P. 1474-1483.
  80. Du T., Cheng J., Zhong L. et al. The alleviation of acute and chronic kidney injury by human Wharton 's jelly-derived mesenchymal stromal cells triggered by ischemia-reperfusion injury via an endocrine mechanism // Cytotherapy. -2012. - Vol. 14(10). - P. 1215-1227.
  81. Zou X., Zhang G., Cheng Z. et al. Microvesicles derived from human Wharton 's Jelly mesenchymal stromal cells ameliorates renal ischemia-reperfusion injury in rats by suppressing CX3CL1 // Stem. Cell Res. Ther. - 2014. - Vol. 5(2). -P. 40.
  82. Kostapanos M.S., Liberopoulos E.N., Elisaf M.S. Statin pleiotropy against renal injury // J. Cardiometab. Syndr. - 2009. - Vol. 4(1). - P. E4-9.
  83. Sharyo S., Yokota-Ikeda N., Mori M. et al. Pravastatin improves renal ischemia-reperfusion injury by inhibiting the mevalonate pathway // Kidney Int. - 2008. - Vol. 74. - P. 577-584.
  84. Brunelli S.M., Waikar S.S., Bateman B.T. et al. Preoperative statin use and postoperative acute kidney injury // Am. J. Med. - 2012. - Vol. 125(12). -P. 1195-1204.
  85. Caetano A.M., Vianna Filho P.T., Castiglia Y.M. et al. Erythropoietin attenuates apoptosis after ischemia-reperfusion-induced renal injury in transiently hyperglycemic Wister rats // Transplant Proc. - 2011. - P. 43(10). -Vol. 3618-3621.
  86. Hu L., Yang C., Zhao T. et al. Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation // J. Surg. Res. - 2012. - Vol. 176(1). - P. 260-266.
  87. Ardalan M.R., Estakhri R., Hajipour B. et al. Erythropoietin ameliorates oxidative stress and tissue injury following renal ischemia/reperfusion in rat kidney and lung // Med. Princ. Pract. - 2013. - Vol. 22(1). - P. 70-74.
  88. Simmons M.N., Subramanian V., Crouzet S., et al. Alpha-melanocyte stimulating hormone analogue AP214 protects against ischemia induced acute kidney injury in a porcine surgical model // J. Urol. - 2010. - Vol. 183(4). -P. 1625-1629.
  89. Hussein A.A., El-Dken Z.H., Barakat N. et al. Renal ischaemia/reperfusion injury: possible role of aquaporins // Acta Physiol. (Oxf). - 2012. - Vol. 204(3). - P. 308-316.
  90. Chen J., Wang W., Zhang Q. et al. Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway // PLoS One. - 2013. - Vol. 8(2). - P. e56224.
  91. Yuzer H., Yuzbasioglu M.F., Ciralik H. et al. Effects of intravenous anesthetics on renal ischemia/reperfusion injury // Ren. Fail. - 2009. - Vol. 31(4). -P. 290-296.
  92. Dogan Z., Yuzbasioglu M.F., Kurutas E.B. et al. Thiopental improves renal ischemia-reperfusion injury // Ren. Fail. - 2010. - Vol. 32(3). - P. 391-395.
  93. Yuzbasioglu M.F., Aykas A., Kurutas E.B. et al. Protective effects of propofol against ischemia/reperfusion injury in rat kidneys // Ren. Fail. - 2010. - Vol. 32(5). - P. 578-583.
  94. Yang S., Chou W.P., Pei L. Effects of propofol on renal ischemia/reperfusion injury in rats // Exp. Ther. Med. - 2013. - Vol. 6(5). - P. 1177-1183.
  95. Lee Y.M., Shin J.W., Lee E.H. et al. Protective effects of propofol against hydrogen peroxide-induced oxidative stress in human kidney proximal tubular cells // Korean J. Anesthesiol. - 2012. - Vol. 63(5). - P. 441-446.
  96. Kim M., Park S.W., Kim M. et al. Isoflurane activates intestinal sphingosine kinase to protect against renal ischemia-reperfusion-induced liver and intestine injury // Anesthesiology. - 2011. - Vol. 114(2). - P. 363-373.
  97. Qin Z., Lv E., Zhan L. et al. Intravenous pretreatment with emulsified isoflurane preconditioning protects kidneys against ischemia/reperfusion injury in rats // BMC Anesthesiol. - 2014. - Vol. 14. - P. 28.
  98. Ozkan F., Senayli Y., Ozyurt H. et al. Antioxidant effects of propofol on tourniquet-induced ischemia-reperfusion injury: an experimental study // J. Surg. Res. - 2012. - Vol. 176(2). - P. 601-607.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies