Biological significance of differentially expressed genes in hypoxic-ischemic acute kidney injury

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Evaluation of the causes and mechanisms of acute kidney injury (AKI) is an urgent task of modern urology, as it leads to a better understanding of the pathology and facilitates the search for effective therapeutic strategies.

Material and methods. This article analyzes literature sources on the significance of biomarkers with proven changes in the expression level in AKI.

Results. The diversity of pathogenetic mechanisms determines the participation of many genes in the cascade of pathological reactions that lead to AKI. Genetic profiling aimed at searching for genetic determinants of AKI will provide early identification of patients at risk and personalized preventive measures in accordance with the modern model of patient-centered medicine.

Conclusion. To date, however, genetic variants of biomarkers of kidney damage and their relationship with susceptibility to AKI have not been determined, and diagnostic panels of expression of genetic biomarkers of kidney damage are not used in routine clinical practice.

全文:

受限制的访问

作者简介

Sergey Popov

St. Luke's Clinical Hospital; S.M. Kirov Military Medical Academy; Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: doc.popov@gmail.com
ORCID iD: 0000-0003-2767-7153

Institute of Biomedical Systems and Biotechnologies, Dr.Sci. (Med.), Professor, Chief Physician of St. Luke's Clinical Hospital, Head of the Center for Endoscopic Urology and New Technologies, Professor at the Department of Urology, S.M. Kirov Military Medical Academy

俄罗斯联邦, St. Petersburg; St. Petersburg; St. Petersburg

Ruslan Guseinov

St. Luke's Clinical Hospital; St. Petersburg State University; Peter the Great St. Petersburg Polytechnic University

Email: rusfa@yandex.ru
ORCID iD: 0000-0001-9935-0243

Institute of Biomedical Systems and Biotechnologies, Cand.Sci. (Med.), Deputy Chief Physician for Scientific Activities, St. Luke's Clinical Hospital, Teaching Assistant at the Department of Hospital Surgery, St. Petersburg State University

俄罗斯联邦, St. Petersburg; St. Petersburg; St. Petersburg

Ashot Yesayan

Pavlov University

Email: essaian.ashot@gmail.com
ORCID iD: 0000-0002-7202-3151

Dr.Sci. (Med.), Professor, Head of the Department of Nephrology and Dialysis, Faculty of Postgraduate Education, Pavlov University, Chief External Expert in Nephrology of the North-Western Federal District of the Russian Federation

俄罗斯联邦, St. Petersburg

K. Sivak

St. Luke's Clinical Hospital; Smorodintsev Research Institute of Influenza

Email: doc.popov@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg

Andrey Vasin

Peter the Great St. Petersburg Polytechnic University

Email: vasin_av@spbstu.ru
ORCID iD: 0000-0002-1391-7139

Institute of Biomedical Systems and Biotechnologies, Director of the Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Doctor of Biological Sciences, Associate Professor, Professor of the Russian Academy of Sciences

俄罗斯联邦, St. Petersburg

Anastasia Kovalevskaya

St. Luke's Clinical Hospital

Email: stenia1407@mail.ru
ORCID iD: 0009-0004-9544-7944

Nephrologist, St. Luke’s Clinical Hospital

俄罗斯联邦, St. Petersburg

Vitaly Perepelitsa

St. Luke's Clinical Hospital; St. Petersburg Medical and Social Institute

Email: perepelitsa_vit@mail.ru
ORCID iD: 0000-0002-7656-4473

Cand.Sci. (Med.), Urologist, St. Luke’s Clinical Hospital

俄罗斯联邦, St. Petersburg; St. Petersburg

Akhmed Beshtoev

St. Petersburg State University

Email: akhmed.beshtoev@gmail.com

Research Intern, St. Luke's Clinical Hospital

俄罗斯联邦, St. Petersburg

Tatyana Lelyavina

St. Luke's Clinical Hospital; Almazov National Medical Research Center

Email: tatianalelyavina@mail.com
ORCID iD: 0000-0001-6796-4064

Leading Researcher at the Institute of Electronic Experiments, Almazov NMRC, Researcher at St. Luke's Clinical Hospital

俄罗斯联邦, St. Petersburg; St. Petersburg

参考

  1. Gameiro J., Fonseca J.A., Outerelo C., Lopes J.A. Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. J. Clin. Med. 2020;9:1704. doi: 10.3390/jcm9061704.
  2. Kellum J.A., Romagnani P., Ashuntantang G., et al. Acute kidney injury. Nat. Rev. Dis. Primers. 2021;7(1):52. doi: 10.1038/s41572-021-00284-z.
  3. Hoste E.A.J., Kellum J.A., Selby N.M., et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018;14(10):607–25. doi: 10.1038/s41581-018-0052-0.
  4. Острое повреждение почек. Клинические рекомендации. М., 2020. 142 с. [Acute kidney damage. Clinical recommendations. M., 2020. 142 p. (In Russ.)].
  5. Zhang W.R., Parikh C.R. Biomarkers of Acute and Chronic Kidney Disease. Ann. RevPhysiol. 2019;81:309–33. doi: 10.1146/annurev-physiol-020518-114605.
  6. Luft F.C. Biomarkers and predicting acute kidney injury. Acta Physiol. (Oxf). 2021;231(1):e13479. doi: 10.1111/apha.13479.
  7. Мирошкина И.В., Грицкевич А.А., Байтман Т.П. и др. Роль маркеров острого повреждения почки в оценке функции почки при ее ишемии. Эксперим. и клин. урология. 2018;4:114–21. [Miroshkina I.V., Gritskevich A.A., Baytman T.P., et al. The role of markers of acute kidney injury in assessing kidney function during ischemia. Exp. Clin. Urol. 2018;4:114–21 (In Russ.)].
  8. Уразаева Л.И., Максудова А.Н. Биомаркеры раннего повреждения почек: обзор литературы. Практическая медицина. 2014;1(4):125–30. [Urazaeva L.I., Maksudova A.N. Biomarkers of early kidney injury: a review of the literature. Pract. Med. 2014;1(4):125–30 (In Russ.)].
  9. Рей С.И., Бердников Г.А., Васина Н.В. Острое почечное повреждение 2020: эпидемиология, критерии диагностики, показания, сроки начала и модальность заместительной почечной терапии. Анестезиология и реаниматология. 2020;5:639. Doi: 0.17116/anaesthesiology202005163. [Rey S.I., Berdnikov G.A., Vasina N.V. Acute kidney injury in 2020: epidemiology, diagnostic criteria, indications, timing and modality of renal replacement therapy. Rus. J. Anesthesiol. Reanimatol. 2020;5:639 (In Russ.)].
  10. Kellum J.A., Prowle J.R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 2018;14(4):217–30. doi: 10.1038/nrneph.2017.184.
  11. Devarajan P. The Current State of the Art in Acute Kidney Injury. Front. Pediatr. 2020;8:70. doi: 10.3389/fped.2020.00070.
  12. Barasch J., Zager R., Bonventre J.V. Acute kidney injury: a problem of definition. Lancet. 2017;389(10071):779–81. doi: 10.1016/S0140-6736(17)30543-3.
  13. Гребенчиков О.А., Лихванцев В.В., Плотников Е.Ю., Силачев Д.Н., Певзнер И.Б., Зорова Л.Д., Зоров Д.Б. Молекулярные механизмы развития и адресная терапия синдрома ишемии-реперфузии. Анестезиология и реаниматология. 2014;3:59–67. [Grebenchikov O.A., Likhvantsev V.V., Plotnikov E.Yu., et al. Molecular mechanisms of development and targeted therapy of ischemia-reperfusion syndrome. Anesthesiol. Resuscit. 2014;3:59–67 (In Russ.)].
  14. Смирнов А.В., Румянцев А.Ш. Острое повреждение почек. Часть II. Нефрология. 2020;24(2):96–128. [Smirnov A.V., Rumyantsev A.Sh. Acute kidney damage. Part II. Nephrol. 2020;24(2):96–128 (In Russ.)].
  15. Кит О.И., Франциянц Е.М., Димитриади С.Н. и др. Экспрессия молекулярных маркеров острого повреждения почек в динамике экспериментальной ишемии. Эксперим. и клин. урология. 2014;4:12–5. [Keith O.I., Frantsantsets E.M., Dimitriadi S.N., et al. Expression of molecular markers of acute kidney injury in the dynamics of experimental ischemia. Exp. Clin. Urol. 2014;4:12–5 (Russ.)].
  16. Cardinal-Fernandez P., Ferruelo A., Martin-Pellicer A., et al. Genetic determinants of acute renal damage risk and prognosis: A systematic review. Med. Intensiva. 2012;36:626–33. doi: 10.1016/j.medine.2012.11.003.
  17. Karimi M.H., Daneshmandi S., Pourfathollah A.A., et al. A study of the impact of cytokine gene polymorphism in acute rejection of renal transplant recipients. Mol. Biol. Rep. 2012;39:509–15. doi: 10.1007/s11033-011-0765-7.
  18. Zibar L., Wagner J., Pavlinic D., et al. The relationship between interferon-gamma gene polymorphism and acute kidney allograft rejection. Scand. J. Immunol. 2011;73:319–24. doi: 10.1111/j.1365-3083.2010.02506.x.
  19. Kunzendorf U., Haase M., Rölver L., Haase-Fielitz A. Novel aspects of pharmacological therapies for acute renal failure. Drugs. 2010;70(9):1099-114. doi: 10.2165/11535890-000000000-00000.
  20. Wen Y., Parikh C.R. Current concepts and advances in biomarkers of acute kidney injury. Crit. Rev. Clin. Lab. Sci. 2021;58(5):354–68. doi: 10.1080/10408363.2021.1879000.
  21. Marakala V. Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury − A systematic review. Clin. Chim. Acta. 2022;536:135–41. doi: 10.1016/j.cca.2022.08.029.
  22. Mishra J., Ma Q., Prada A., et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 2003;14(10):2534–43. doi: 10.1097/01.ASN.0000088027.54400.C6
  23. Woodson B., Wang L., Mandava S., Lee B.R. Urinary cystatin C and NGAL as early biomarkers for assessment of renal ischemia-reperfusion injury: a serum marker to replace creatinine? J. Endourol. 2013;27:1510–15. doi: 10.1089/end.2013.0198.
  24. Мосоян М.С., Аль-Шукри С.Х., Есаян А.М и др. NGAL-ранний биомаркер острого повреждения почек после резекции почки и нефрэктомии. Нефрология. 2013;17(2):55–9. [Mosoyan M.S., Al-Shukri S.H., Yesayan A.M., et al. NGAL is an early biomarker of acute kidney injury after partial nephrectomy and nephrectomy. Nephrol. 2013;17(2):55–9 (In Russ.)].
  25. Haase M., Bellomo R., Devarajan P., et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 2009;54(6):1012–24. doi: 10.1053/j.ajkd.2009.07.020.
  26. Jiang Y., Jiang W., Li Y., et al. Evaluation of Klotho gene expression and NGAL levels following acute kidney injury during pregnancy hypertensive disorders. Pregnancy Hypertens. 2022;30:161–70. doi: 10.1016/j.preghy.2022.08.008.
  27. Белов Ю.В., Катков А.И., Винокуров И.А. Риски и возможности профилактики развития острой почечной недостаточности у пациентов после операции на сердце. Кардиология и сердечно-сосудистая хирургия. 2015;8(3):1823. doi: 10.17116/kardio20158318-23. [Belov Iu.V., Katkov A.I., Vinokurov I.A. Risks and opportunities to prevent acute renal failure in patients after cardiac surgery. Сardiol. Serdechno-Sosud. Surg. 2015;8(3):1823 (In Russ.)].
  28. Dabbagh A., Esmailian F., Aranki S. Translated by Zhang Peide. Postoperative Intensive Care in Adult Cardiac Surgery. Second ed. Shandong Science and Technology Press. 2021:214–44.
  29. Bennett M., Dent C.L., Ma Q., et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin. J. Am. Soc. Nephrol. 2008;3(3):665–73. doi: 10.2215/CJN.04010907.
  30. Friedrich M.G., Bougioukas I., Kolle J., et al. NGAL expression during cardiopulmonary bypass does not predict severity of postoperative acute kidney injury. BMC. Nephrol. 2017;18(1):73. doi: 10.1186/s12882-017-0479-8.
  31. Zhang B., Song Y., Ma Q., et al. Expression and Significance of KIM-1, NGAL, and HO-1 in Patients with Acute Kidney Injury After Cardiac Valve Replacement. J. Inflamm. Res. 2023;16:2755–61. doi: 10.2147/JIR.S410338.
  32. Kidher E., Harling L., Ashrafian H., et al. Pulse wave velocity and neutrophil gelatinase-associated lipocalin as predictors of acute kidney injury following aortic valve replacement. J. Cardiothorac. Surg. 2014;9:89. Doi: 10.1186/ 1749-8090-9-89.
  33. Tanase D.M., Gosav E.M., Radu S., et al. The Predictive Role of the Biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) Cisplatin-Induced Nephrotoxicity. Int. J. Mol. Sci. 2019;20(20):5238. doi: 10.3390/ijms20205238.
  34. Кармакова Т.А., Сергеева Н.С., Канукоев К.Ю. и др. Молекула повреждения почек 1 (KIM-1): многофункциональный гликопротеин и биологический маркер (обзор). Соврем. технологии в медицине. 2021;13(3):64–80. doi: 10.17691/stm2021.13.3.08. [Karmakova Т.А., Sergeeva N.S., Kanukoev К.Yu., et al. Kidney injury molecule 1 (KIM-1): a multifunctional glycoprotein and biological marker (review). Sovremen. Tehnol. Med. 2021;13(3):64–80 (In Russ.)].
  35. Ichimura T., Bonventre J.V., Bailly V., et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 1998;273(7):4135-42. doi: 10.1074/jbc.273.7.4135.
  36. The Human Protein Atlas. HAVCR1. URL:https://www.proteinatlas.org/ensg00000113249-havcr1.
  37. Lim A.I., Tanq S.C., Lai K.N., Leung J.C. Kidney injury molecule-1: more than just an injury marker of the epithelial cells. J. Cell. Physiol. 2013;228(5):917–24. doi: 10.1002/jcp.24267.
  38. Zhang Z., Cai C.X. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway. Mol. Cell. Biophem. 2016;416(1–2):109–16. doi: 10.1007/s11010-016-2700-7.
  39. Brooks C.R., Yeung M.Y., Brooks Y.S., et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J. 2015;34(19):2441–64. doi: 10.15252/embj.201489838.
  40. Zhang P.L., Rothblum L.I., Han W.K., et al. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008;73(5):608–14. doi: 10.1038/sj.ki.5002697.
  41. Han W.K., Bailly V., Abichandani R., et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–44. doi: 10.1046/j.1523-1755.2002.00433.x.
  42. Pang H.M., Qin X.L., Liu T.T., et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: a prospective study. Eur. Rev. Med. Pharmacol. Sci. 2017;21(18):4203–13.
  43. Griffin B.R., Faubel S., Edelstein C.L. Biomarkers of Drug-Induced Kidney Toxicity. Ther. Drug Monit. 2019;41(2):213–26. doi: 10.1097/FTD.0000000000000589.
  44. Tabernero G., Pescador M., Ruiz Ferreras E., et al. Evaluation of NAG, NGAL, and KIM-1 as Prognostic Markers of the Initial Evolution of Kidney Transplantation. Diagnostics (Basel). 2023;13(11):1843. doi: 10.3390/diagnostics13111843.
  45. Shao X., Tian L., Xu W., et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One. 2014;9(1):e84131. doi: 10.1371/journal.pone.0084131.
  46. Humphreys B.D., Xu F., Sabbisetti V., et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Invest. 2013;123(9):4023–35. doi: 10.1172/JCI45361.
  47. Yoon S.Y., Kim J.S., Jeong K.H., et al. Acute Kidney Injury: Biomarker-Guided Diagnosis and Management. Medicina (Kaunas). 2022;58(3):340. doi: 10.3390/medicina58030340.
  48. Okuda H., Obata Y., Kamijo-Ikemori A., Inoue S. Quantitative and qualitative analyses of urinary L-FABP for predicting acute kidney injury after emergency laparotomy. J. Anesth. 2022;36(1):38–45. doi: 10.1007/s00540-021-03003-w.
  49. Kamijo-Ikemori A., Ichikawa D., Matsui K., et al. Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan. Rinsho Byori. 2013;61(7):635–40. Japanese.
  50. Yamamoto T., Noiri E., Ono Y., et al. Renal L-type fatty acid-binding protein in acute ischemic injury. J. Am. Soc. Nephrol. 2007;18(11):2894–902. doi: 10.1681/ASN.2007010097.
  51. Yokoyama T., Kamijo-Ikemori A., Sugaya T., et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am. J. Pathol. 2009;174(6):2096–106. doi: 10.2353/ajpath.2009.080780.
  52. Yanishi M., Kinoshita H. Urinary L-type fatty acid-binding protein is a predictor of cisplatin-induced acute kidney injury. BMC Nephrol. 2022;23(1):125. doi: 10.1186/s12882-022-02760-4.
  53. Ichikawa D., Kamijo-Ikemori A., Sugaya T., et al. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor loss in renal injury caused by RAS activation. Am. J. Physiol. Renal. Physiol. 2014;306(6):F655–63. doi: 10.1152/ajprenal.00460.2013.
  54. Osaki K., Suzuki Y., Sugaya T., et al. Amelioration of angiotensin II-induced salt-sensitive hypertension by liver-type fatty acid-binding protein in proximal tubules. Hypertension. 2013;62(4):712–18. doi: 10.1161/HYPERTENSIONAHA.113.01203.
  55. Пролетов Я.Ю., Саганова Е.С., Смирнов А.В., Зверьков Р.В. Биомаркеры в диагностике острого повреждения почек. Сообщение II. Нефрология. 2014;18(6):51–8. [Proletov Y.Yu., Saganova E.S., Smirnov A.V., Zverkov R.V. Biomarkers in the diagnosis of acute kidney injury. Message II. Nephrology. 2014;18(6):51–8 (In Russ.].
  56. Ни А.Н., Сергеева Е.В., Шуматова Т.А. и др. Возможности использования маркера L-FABP в диагностике повреждения почек. Соврем. проблемы науки и образования. 2018;4. Режим доступа: https://science-education.ru/ru/article/view?id=27874 (дата обращения: 27.02.2024. [Ni A.N., Sergeeva E.V., Shumatova T.A., et al. Possibilities of using the L-FABP marker in the diagnosis of kidney damage. Modern problems of science and education. 2018;4. Available at: https://science-education.ru/ru/article/view?id=27874 (access date: 02/27/2024) (In Russ.)].
  57. Франциянц Е.М., Ушакова Н.Д., Кит О.И. и др. Динамика маркеров острого почечного повреждения при резекции почки по поводу рака. Общая реаниматология. 2017;13(6):38–47. [Franzitsants E.M., Ushakova N.D., Keith O.I., et al. Dynamics of markers of acute kidney injury during kidney resection for cancer. Gen. Resuscit. 2017;13(6):38–47 (In Russ.)].
  58. Karakaş P.G., Çalişkan F., Kati C., Tunçel Ö.K. The Importance of Neutrophil Gelatinase-Associated Lipocalin and Liver Type Fatty Acid Binding Protein in Acute Kidney Injury. Clin. Lab. 2022;68(10).
  59. Nakamura K., Okamura H., Nagata K., et al. Purification of a factor which provides a costimulatory signal for gamma interferon production. Infect. Immun. 1993;61(1):64–70. doi: 10.1128/iai.61.1.64-70.1993.
  60. Ortega-Loubon C., Martínez-Paz P., García-Morán E., et al. Genetic Susceptibility to Acute Kidney Injury. J. Clin. Med. 2021;10(14):3039. doi: 10.3390/jcm10143039.
  61. Lin X., Yuan J., Zhao Y., Zha Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J. Nephrol. 2015;28(1):7–16. doi: 10.1007/s40620-014-0113-9.
  62. Leslie J.A., Meldrum K.K. The role of interleukin-18 in renal injury. J. Surg. Res. 2008;145(1):170–5. doi: 10.1016/j.jss.2007.03.037.

补充文件

附件文件
动作
1. JATS XML
##common.cookie##