Biological significance of differentially expressed genes of hypoxic-ischemic acute kidney injury (part 2)
- 作者: Popov S.V.1,2, Guseinov R.G.1,3,4, Yesayan A.M.1, Isakova-Sivak I.N.1, Sivak K.V.1,5, Skryabin O.N.1, Gorbacheva I.A.1, Matveeva D.A.1, Grushevsky R.O.1, Kovalevskaya A.V.1, Beshtoev A.K.1, Malyshev E.A.1, Lelyavina T.A.1,6
-
隶属关系:
- St. Luke's Clinical Hospital
- S.M. Kirov Military Medical Academy
- St. Petersburg State University
- St. Petersburg Medical and Social Institute
- A.A. Smorodintsev Research Institute of Influenza
- V.A. Almazov National Medical Research Center
- 期: 卷 16, 编号 4 (2024)
- 页面: 53-72
- 栏目: Literature Reviews
- URL: https://journals.eco-vector.com/2075-3594/article/view/680029
- DOI: https://doi.org/10.18565/nephrology.2024.4.53-72
- ID: 680029
如何引用文章
详细
The study of the mechanisms of cell death is currently one of the most rapidly developing areas of modern biomedicine. Acute kidney injury is characterized by massive cell death and subsequent marked decline in kidney function. The review presents data on the molecular mechanisms of proximal renal tubule cell death in acute kidney injury. This information will provide characterization of the etiology and pathogenesis of the disease at the molecular level, and also serve as a basis for searching for targets for effective renoprotective therapy in many pathological processes in the kidneys.
全文:

作者简介
Sergey Popov
St. Luke's Clinical Hospital; S.M. Kirov Military Medical Academy
编辑信件的主要联系方式.
Email: info@lucaclinic.ru
ORCID iD: 0000-0003-2767-7153
Dr.Sci. (Med.), Professor, Chief Physician
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044; 194044, St. PetersburgRuslan Guseinov
St. Luke's Clinical Hospital; St. Petersburg State University; St. Petersburg Medical and Social Institute
Email: info@lucaclinic.ru
ORCID iD: 0000-0001-9935-0243
Cand.Sci. (Med.), Deputy Chief Physician
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044; St. PetersburgAshot Yesayan
St. Luke's Clinical Hospital
Email: essaian.ashot@gmail.com
ORCID iD: 0000-0002-7202-3151
Dr.Sci. (Med.), Professor, Head of the Department, Chief Nephrologist of the Northwestern Federal District of the Russian Federation
俄罗斯联邦, 17 L.Tolstoy st., St. Petersburg, 197022Irina Isakova-Sivak
St. Luke's Clinical Hospital
Email: isakova.sivak@iemspb.ru
ORCID iD: 0000-0002-2801-1508
Dr.Sci. (Biol.), Corresponding Member of the Russian Academy of Sciences, Research Department, Leading Researcher
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044Konstantin Sivak
St. Luke's Clinical Hospital; A.A. Smorodintsev Research Institute of Influenza
Email: kvsivak@gmail.com
ORCID iD: 0000-0003-4064-5033
Dr.Sci. (Biol.), Head of the Laboratory of Drug Safety
俄罗斯联邦, 197022, St. PetersburgOleg Skryabin
St. Luke's Clinical Hospital
Email: skryabin_55@mail.com
ORCID iD: 0000-0002-6664-2861
Dr.Sci. (Med.), Professor; Chief Oncologist
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044Irina Gorbacheva
St. Luke's Clinical Hospital
Email: kvbsf@yandex.ru
ORCID iD: 0000-0002-9044-7257
Dr.Sci. (Med.), Professor, Chief Therapist
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044Darya Matveeva
St. Luke's Clinical Hospital
Email: matveeva.darya.1990@mail.ru
ORCID iD: 0009-0006-2878-657X
Dr.Sci. (Med.), Professor, Chief Therapist
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044Roman Grushevsky
St. Luke's Clinical Hospital
Email: flametah@yandex.ru
ORCID iD: 0009-0006-9032-7729
Urologist, Oncologist
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044Anastasia Kovalevskaya
St. Luke's Clinical Hospital
Email: stenia1407@mail.ru
ORCID iD: 0009-0004-9544-7944
Nephrologist
俄罗斯联邦, 46 Chugunnaya St., St. PetersburgAkhmed Beshtoev
St. Luke's Clinical Hospital
Email: akhmed.beshtoev@gmail.com
Researcher
俄罗斯联邦, 46 Chugunnaya St., St. Petersburg, 194044Egor Malyshev
St. Luke's Clinical Hospital
Email: malyshevyegor@gmail.com
ORCID iD: 0000-0001-6294-6182
Researcher
俄罗斯联邦, 194044 Санкт-Петербург, ул. Чугунная, д. 46Tatyana Lelyavina
St. Luke's Clinical Hospital; V.A. Almazov National Medical Research Center
Email: tatianalelyavina@mail.ru
Dr.Sci. (Med.), Leading Researcher
俄罗斯联邦, Saint Petersburg参考
- See E.J., Jayasinghe K., Glassford N., et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 2019;95(1):160–72. doi: 10.1016/j.kint.2018.08.036.
- Balzer M.S., Doke T., Yang Y.W., et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat. Commun. 2022;13(1):4018. doi: 10.1038/s41467-022-31772-9.
- Linkermann A., Chen G., Dong G., et al. Regulated cell death in AKI. J. Am. Soc. Nephrol. 2014;25:2689–701. doi: 10.1681/ASN.2014030262.
- Schumer M., Colombel M.C., Sawczuk I.S., et al. Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am. J. Pathol. 1992;140(4):831–8.
- Vanden Berghe T., Linkermann A., Jouan-Lanhouet S., et al. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 2014;15:135–47. doi: 10.1038/nrm3737.
- Linkermann A., Bräsen J.H., Himmerkus N., et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 2012;81(8):751–61. doi: 10.1038/ki.2011.450.
- Linkermann A., Bräsen J.H., Darding M., et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl. Acad. Sci. U S A. 2013;110(29):12024–9. doi: 10.1073/pnas.1305538110.
- Xu Y., Ma H., Shao J., et al. A Role for Tubular Necroptosis in Cisplatin-Induced AKI. J. Am. Soc. Nephrol. 2015;26(11):2647–58. doi: 10.1681/ASN.2014080741.
- Jorgensen I., Rayamajhi M., Miao E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 2017;17:151–64. doi: 10.1038/nri.2016.147.
- D’Arcy M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019; 43(6):582–92. doi: 10.1002/cbin.11137.
- Wang S., Zhang C., Hu L., Yang C. Necroptosis in acute kidney injury: A shedding light. Cell Death Dis. 2016;7(3):e2125. doi: 10.1038/cddis.2016.37.
- Jiang M., Qi L., Li L., et al. Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer. Int. J. Cancer. 2021;149(7):1408–20. doi: 10.1002/ijc.33698.
- Сеничкин В.В., Первушин Н.В. и др. Таргетирование белков семейства bcl-2: что, где, когда? Биохимия. 2020;85(10):1421–41). doi: 10.31857/S0320972520100097. [Senichkin V.V., Pervushin N.V., Zuev A.P., et al. Targeting bcl-2 family proteins: what, where, when? Biochemistry. 2020;85(10):1421–41 (In Russ.].
- Arbab I.A., Looi C.Y., Abdul A.B., et al. Dentatin induces apoptosis in prostate cancer cells via BCL-2, bcl-xL, survivin downregulation, caspase-9,-3/7 activation, and NF-κB inhibition. Evid. Based Complementary Altern. Med. 2012;2012:856029. doi: 10.1155/2012/856029.
- Li P., Shi M., Maique J., et al. Beclin 1/Bcl-2 complex-dependent autophagy activity modulates renal susceptibility to ischemia-reperfusion injury and mediates renoprotection by Klotho. Am. J. Physiol. Renal. Physiol. 2020;318(3):F772–92. doi: 10.1152/ajprenal.00504.2019.
- Chien C.T., Chang T.C., Tsai C.Y., et al. Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am. J. Transplant. 2005;5(6):1194–203. doi: 10.1111/j.1600-6143.2005.00826.x.
- Wei Q., Dong G., Chen J.K., et al. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int. 2013;84(1):138–48. doi: 10.1038/ki.2013.68.
- Doi K., Rabb H. Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets. Kidney Int. 2016;89(3):555–64. doi: 10.1016/j.kint.2015.11.019.
- Rabb H., Griffin M.D., McKay D.B., et al. Acute Dialysis Quality Initiative Consensus XIII Work Group. Inflammation in AKI: Current Understanding, Key Questions, and Knowledge Gaps. J. Am. Soc. Nephrol. 2016;27(2):371–9. doi: 10.1681/ASN.2015030261.
- Hu J.G., Fu Y., Xu J.J., et al. Altered gene expression profile in a rat model of gentamicin-induced ototoxicity and nephrotoxicity, and the potential role of upregulated Ifi44 expression. Mol. Med. Rep. 2017;16(4):4650–8. doi: 10.3892/mmr.2017.7150.
- Shin H.S., Yu M., Kim M., et al. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. Lab. Invest. 2014;94:1147–60. doi: 10.1038/labinvest.2014.101.
- Xu C., Huang X., Yan G., et al. Tolvaptan Improves Contrast-Induced Acute Kidney Injury. J. Renin Angiotensin Aldosterone Syst. 2022;2022:7435292. doi: 10.1155/2022/7435292.
- Zhang J., Luan Z.L., Huo X.K., et al. Direct targeting of sEH with alisol B alleviated the apoptosis, inflammation, and oxidative stress in cisplatin-induced acute kidney injury. Int. J. Biol. Sci. 2023;19(1):294–310. doi: 10.7150/ijbs.78097.
- Wakana Y., Takai S., Nakajima K., et al. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation. Mol. Biol. Cell. 2008;19(5):1825–36. doi: 10.1091/mbc.e07-08-0781.
- Annaert W.G., Becker B., Kistner U., et al. Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31. J. Cell Biol. 1997;139(6):1397–410. doi: 10.1083/jcb.139.6.1397.
- Namba T. BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. Sci. Adv. 2019;5(6):eaaw1386. doi: 10.1126/sciadv.aaw1386.
- Nguyen M., Breckenridge D.G., Ducret A., Shore G.C. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell Biol. 2000;20(18):6731–40. doi: 10.1128/MCB.20.18.6731-6740.2000.
- Quistgaard E.M. BAP31: Physiological functions and roles in disease. Biochimie. 2021;186:105–29. doi: 10.1016/j.biochi.2021.04.008.
- Зверев Я.Ф., Брюханов В.М. Стресс эндоплазматического ретикулума глазами нефролога (сообщение II). Нефрология. 2013;17(2):39-54). doi: 10.24884/1561-6274-2013-17-2-39-54. [Zverev Ya.F., Bryukhanov V.M. Endoplasmic reticulum stress through the eyes of a nephrologist (report II). Nephrology. 2013;17(2):39–54 (In Russ.)].
- Almanza A., Carlesso A., Chintha C., et al. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J. 2019;286(2):241–78. doi: 10.1111/febs.14608.
- Namba T., Tian F., Chu K., et al. CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. Cell Rep. 2013;5(2):331–9. doi: 10.1016/j.celrep.2013.09.020.
- Lin Q., Li S., Jiang N., et al. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy. 2021;17(10):2975–90. doi: 10.1080/15548627.2020.1848971.
- Field J.T., Gordon J.W. BNIP3 and Nix: Atypical regulators of cell fate. Biochim. Biophys. Acta Mol. Cell Res. 2022;1869(10):119325. doi: 10.1016/j.bbamcr.2022.119325.
- Tang C., Han H., Liu Z., et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 2019;10(9):677. doi: 10.1038/s41419-019-1899-0.
- Sun Y., Cao Y., Wan H., et al. A mitophagy sensor PPTC7 controls BNIP3 and NIX degradation to regulate mitochondrial mass. Mol. Cell. 2024;84(2):327–44.e9. doi: 10.1016/j.molcel.2023.11.038.
- Bhatia D., Chung K.P., Nakahira K., et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI. Insight. 2019;4(23):e132826. doi: 10.1172/jci.insight.132826.
- Wang Y., Tang C., Cai J., et al. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death Dis. 2018;9(11):1113. doi: 10.1038/s41419-018-1152-2.
- Горбунова А.С., Денисенко Т.В., Япрынцева М.А. и др. BNIP3 как регулятор цисплатин-индуцированного апоптоза. Биохимия. 2020;85(10):1464–73. [Gorbunova A.S., Denisenko T.V., Yapryntseva M.A., et al. BNIP3 as a regulator of cisplatin-induced apoptosis. Biochemistry. 2020;85(10):1464–73 (In Russ.)].
- Lin Q., Li S., Jiang N., et al. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy. 2021;17(10):2975–90. doi: 10.1080/15548627.2020.1848971.
- Zhang X.B., Chen G.P., Huang M.H., et al. Bcl-2 19-kDa Interacting Protein 3 (BNIP3)-Mediated Mitophagy Attenuates Intermittent Hypoxia-Induced Human Renal Tubular Epithelial Cell Injury. Med. Sci. Monit. 2022;28:e936760. doi: 10.12659/MSM.936760.
- Marinković M., Novak I. A brief overview of BNIP3L/NIX receptor-mediated mitophagy. FEBS Open Bio. 2021;11(12):3230–6. doi: 10.1002/2211-5463.13307.
- Li Y., Zheng W., Lu Y., et al. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease. Cell Death Dis. 2021;13(1):14. doi: 10.1038/s41419-021-04469-y.
- Hao Y., Purtha W., Cortesio C., et al. Crystal structures of human procathepsin H. PLoS One. 2018;13(7):e0200374. doi: 10.1371/journal.pone.0200374.
- Wang Y., Zhao J., Gu Y., et al. Cathepsin H: Molecular characteristics and clues to function and mechanism. Biochem. Pharmacol. 2023;212:115585. doi: 10.1016/j.bcp.2023.115585.
- Magister Š., Tseng H.C., Bui V.T., et al. Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F. Oncotarget. 2015;6(26):22310–27. doi: 10.18632/oncotarget.4208.
- Deng T., Lu X., Jia X., et al. Cathepsins and cancer risk: a Mendelian randomization study. Front. Endocrinol. (Lausanne). 2024;15:1428433. doi: 10.3389/fendo.2024.1428433.
- Peng X., Yang Y., Hou R., et al. MTCH2 in Metabolic Diseases, Neurodegenerative Diseases, Cancers, Embryonic Development and Reproduction. Drug Des. Devel. Ther. 2024;18:2203–13. doi: 10.2147/DDDT.S460448.
- Shamas-Din A., Satsoura D., Khan O., et al. Multiple partners can kiss-and-run: Bax transfers between multiple membranes and permeabilizes those primed by tBid. Cell Death Dis. 2014;5(6):e1277. doi: 10.1038/cddis.2014.234.
- Guna A., Stevens T.A., Inglis A.J., et al. MTCH2 is a mitochondrial outer membrane protein insertase. Science. 2022;378(6617):317–22. doi: 10.1126/science.add1856.
- Labbé K., Mookerjee S., Le Vasseur M., et al. The modified mitochondrial outer membrane carrier MTCH2 links mitochondrial fusion to lipogenesis. J. Cell Biol. 2021;220(11):e202103122. doi: 10.1083/jcb.202103122.
- Zheng X., Chu B. The biology of mitochondrial carrier homolog 2. Mitochondrion. 2024;75:101837. doi: 10.1016/j.mito.2023.101837.
- Reynhout S., Janssens V. Physiologic functions of PP2A: Lessons from genetically modified mice. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:31–50. doi: 10.1016/j.bbamcr.2018.07.010.
- Lenaerts L., Reynhout S., Verbinnen I., et al. The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction. Genet. Med. 2021;23(2):352–62. doi: 10.1038/s41436-020-00981-2.
- Hassin O., Oren M. Drugging p53 in cancer: one protein, many targets. Nat. Rev. Drug Discov. 2023;22(2):127–44. doi: 10.1038/s41573-022-00571-8.
- Aubrey B.J, Kelly G.L, Janic A., et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–13. doi: 10.1038/cdd.2017.169.
- Bergamaschi D., Samuels Y., O'Neil N.J., et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat. Genet. 2003;33(2):162–7. doi: 10.1038/ng1070.
- Yin Y., Stephen C.W., Luciani M.G., Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat. Cell Biol. 2002;4(6):462–7. doi: 10.1038/ncb801.
- Olivier M., Hollstein M., Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010;2(1):a001008. doi: 10.1101/cshperspect.a001008.
- Żydowicz-Machtel P., Dutkiewicz M., Swiatkowska A. et al. Translation of human Δ133p53 mRNA and its targeting by antisense oligonucleotides complementary to the 5'-terminal region of this mRNA. PLoS One. 2021;16(9):e0256938. doi: 10.1371/journal.pone.0256938.
- Swiatkowska A. p53 and Its Isoforms in Renal Cell Carcinoma-Do They Matter? Biomedicines. 2022;10(6):1330. doi: 10.3390/biomedicines10061330.
- Choe J.H., Kawase T., Xu A., et al. Li-Fraumeni Syndrome-Associated Dimer-Forming Mutant p53 Promotes Transactivation-Independent Mitochondrial Cell Death. Cancer Discov. 2023;13(5):1250–73. doi: 10.1158/2159-8290.CD-22-0882.
- Jafrin S., Aziz M.A., Islam M.S. Association between TP73 G4C14-A4T14 polymorphism and different cancer types: an updated meta-analysis of 55 case-control studies. J. Int. Med. Res. 2022;50(10):3000605221133173. doi: 10.1177/03000605221133173.
- Bewley M.C., Graziano V., Jiang J., et al. Structures of wild-type and mutant human spermidine/spermine N1-acetyltransferase, a potential therapeutic drug target. Proc. Natl. Acad. Sci. U S A. 2006;103(7):2063–8. doi: 10.1073/pnas.0511008103.
- Hegde S.S., Chandler J., Vetting M.W., et al. Mechanistic and structural analysis of human spermidine/spermine N1-acetyltransferase. Biochemistry. 2007;46(24):7187–95. doi: 10.1021/bi700256z.
- Gimelli G., Giglio S., Zuffardi O., et al. Gene dosage of the spermidine/spermine N(1)-acetyltransferase ( SSAT) gene with putrescine accumulation in a patient with a Xp21.1p22.12 duplication and keratosis follicularis spinulosa decalvans (KFSD). Hum. Genet. 2002;111(3):235–41. doi: 10.1007/s00439-002-0791-6.
- Березов Т.Т., Маклецова М.Г., Сяткин С.П. и др. Роль обмена полиаминов в функциональной активности мозга в норме и при патологии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2013;113(7):65 70). [Berezov T.T., Makletsova M.G., Siatkin S.P., et al. A role of polyamine metabolism in the functional activity of the normal and pathological brain. S.S. Korsakov J. Neurol. Psych. 2013;113(7):65 70 (In Russ.)].
- Хомутов М.А., Михура И.В., Кочетков С.Н., Хомутов А.Р. С-метилированные аналоги спермина и спермидина: синтез и биологическая активность. Биоорганическая химия. 2019;45(6):588–614. doi: 10.1134/S013234231906023X. [Khomutov M.A., Mikhura I.V., Kochetkov S.N., Khomutov A.R. C-methylated analogs of spermine and spermidine: synthesis and biological activity. Bioorgan. Chemistry. 2019;45(6):588–614 (In Russ.)].
- Golej D.L., Askari B., Kramer F., et al. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E₂ release from human arterial smooth muscle cells. J. Lipid Res. 2011;52(4):782–93. doi: 10.1194/jlr.M013292
- Yuan H., Li X., Zhang X., et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 2016;478(3):1338–43. doi: 10.1016/j.bbrc.2016.08.124.
- Doll S., Proneth B., Tyurina Y.Y., et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017;13(1):91–98. doi: 10.1038/nchembio.2239.
- Wang Y., Zhang M., Bi R., et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol. 2022;51:102262. doi: 10.1016/j.redox.2022.102262.
- Ohkuni A., Ohno Y., Kihara A. Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway. Biochem. Biophys. Res. Commun. 2013;442(3–4):195–201. doi: 10.1016/j.bbrc.2013.11.036.
- Jia B., Li J., Song Y., Luo C. ACSL4-Mediated Ferroptosis and Its Potential Role in Central Nervous System Diseases and Injuries. Int. J. Mol. Sci. 2023;24(12):10021. doi: 10.3390/ijms241210021.
- Strappazzon F., Vietri-Rudan M., Campello S., et al. Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J. 2011;30(7):1195–208. doi: 10.1038/emboj.2011.49.
- Margariti A., Li H., Chen T., et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J. Biol. Chem. 2013;288(2):859–72. doi: 10.1074/jbc.M112.412783.
- Xia P., Wang S., Du Y., et al. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 2013;32(20):2685–96. doi: 10.1038/emboj.2013.189.
- Ashkenazi A., Bento C.F., Ricketts T., Vicinanza M., Siddiqi F., Pavel M. et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545(7652):108-111. doi: 10.1038/nature22078.
- McKnight N.C., Zhong Y., Wold M.S., Gong S., Phillips G.R. et al. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet. 2014;10(10):e1004626. doi: 10.1371/journal.pgen.1004626.
- McCracken A.N., Edinger A.L. Nutrient transporters: the Achilles’ heel of anabolism. Trends Endocrinol. Metab. 2013;24(4):200–8. doi: 10.1016/j.tem.2013.01.002.
- Zhang C., Shafaq-Zadah M., Pawling J., et al. SLC3A2 N-glycosylation and Golgi remodeling regulate SLC7A amino acid exchangers and stress mitigation. J. Biol. Chem. 2023;299(12):105416. doi: 10.1016/j.jbc.2023.105416.
- Xia R., Peng H.F., Zhang X., Zhang H.S. Comprehensive review of amino acid transporters as therapeutic targets. Int. J. Biol. Macromol. 2024;260(Pt. 2):129646. doi: 10.1016/j.ijbiomac.2024.129646.
- Kantipudi S., Jeckelmann J.M., Ucurum Z., et al. The Heavy Chain 4F2hc Modulates the Substrate Affinity and Specificity of the Light Chains LAT1 and LAT2. Int. J. Mol. Sci. 2020;21(20):7573. doi: 10.3390/ijms21207573.
- Charania M.A., Laroui H., Liu H., et al. Intestinal epithelial CD98 directly modulates the innate host response to enteric bacterial pathogens. Infect. Immun. 2013;81(3):923–34. doi: 10.1128/IAI.01388-12.
- Ramírez M.A., Morales J., Cornejo M., et al. Beltrán AR, Sobrevia L. Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(4 Pt. A):1192–202. doi: 10.1016/j.bbadis.2018.01.032.
- Ryter S.W. Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells. 2021;10(3):515. doi: 10.3390/cells10030515.
- Бобкова И.Н., Чеботарева Н.В., Козловская Л.В., Непринцева Н.В. Защитное действие белков теплового шока при заболеваниях почек. Клин. нефрология. 2011;6:59–66. [Bobkova I.N., Chebotareva N.V., Kozlovskaya L.V., Neprintseva N.V. Protective effect of heat shock proteins in kidney diseases. Clin. Nephrol. 2011;6:59–66 (In Russ.)].
- Liu R., Zhang X., Nie L., et al. Heme oxygenase 1 in erythropoiesis: an important regulator beyond catalyzing heme catabolism. Ann. Hematol. 2023;102(6):1323–32. doi: 10.1007/s00277-023-05193-7.
- Renji S., Shah N., Madkaikar M. Heme Oxygenase-1 Deficiency. Indian Pediatr. 2021;58(3):290–1. doi: 10.1007/s13312-021-2180-z.
- Wang B., Wang X.P. Does Ceruloplasmin Defend Against Neurodegenerative Diseases? Curr. Neuropharmacol. 2019;17(6):539–49. doi: 10.2174/1570159X16666180508113025.
- Ибрагимов Б.Р., Скибо Ю.В., Абрамова З.И. Аутофагия и LC3-ассоциированный фагоцитоз: сходства и различия. Медицинская иммунология. 2023;25(2):233–52. doi: 10.15789/10.15789/1563-0625-AAL-2569. [Ibragimov B.R., Skibo Yu.V., Abramova Z.I. Autophagy and LC3-associated phagocytosis: similarities and differences. Med. Immunol. 2023;25(2):233–52 (In Russ.)].
- Nguyen T.N., Padman B.S., Usher J., et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 2016;215(6):857–74. doi: 10.1083/jcb.201607039.
- Zhu Y., Massen S., Terenzio M., et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 2013;288(2):1099–113. doi: 10.1074/jbc.M112.399345.
- An H., Ordureau A., Paulo J.A., et al. TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress. Mol. Cell. 2019;74(5):891–908.e10. doi: 10.1016/j.molcel.2019.03.034.
- He M.X., He Y.W. CFLAR/c-FLIPL: a star in the autophagy, apoptosis and necroptosis alliance. Autophagy. 2013;9(5):791–3. doi: 10.4161/auto.23785.
- Smyth P., Sessler T., Scott C.J., Longley D.B. FLIP(L): the pseudo-caspase. FEBS J. 2020;287(19):4246–60. doi: 10.1111/febs.15260.
- McCann C., Crawford N., Majkut J., et al. Cytoplasmic FLIP(S) and nuclear FLIP(L) mediate resistance of castrate-resistant prostate cancer to apoptosis induced by IAP antagonists. Cell Death Dis. 2018;9(11):1081. doi: 10.1038/s41419-018-1125-5.
- Liccardi G., Ramos Garcia L., Tenev T., et al. RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Mol. Cell. 2019;73(3):413–28.e7. doi: 10.1016/j.molcel.2018.11.010.
- Someda M., Kuroki S., Miyachi H., et al. Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis. Cell Death Differ. 2020;27(5):1539–53. doi: 10.1038/s41418-019-0434-2.
- Meng H., Liu Z., Li X., et al. Death-domain dimerization-mediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis. Proc. Natl. Acad. Sci. U S A. 2018;115(9):E2001–9. doi: 10.1073/pnas.1722013115.
- Petsalaki E., Dandoulaki M,. Zachos G. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J. Cell Biol. 2018;217(3):861–76. doi: 10.1083/jcb.201709005.
- Petsalaki E., Zachos G. CHMP4C: A novel regulator of the mitotic spindle checkpoint. Mol. Cell Oncol. 2018;5(3):e1445944. doi: 10.1080/23723556.2018.1445944.
- Larios J., Mercier V., Roux A., Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J. Cell Biol. 2020;219(3):e201904113. doi: 10.1083/jcb.201904113.
- Tummers B., Mari L., Guy C.S., S. et al. Caspase-8-Dependent Inflammatory Responses Are Controlled by Its Adaptor, FADD, and Necroptosis. Immunity. 2020;52(6):994–1006.e8. doi: 10.1016/j.immuni.2020.04.010.
- Keller N., Ozmadenci D., Ichim G., Stupack D. Caspase-8 function, and phosphorylation, in cell migration. Semin. Cell Dev. Biol. 2018;82:105–17. doi: 10.1016/j.semcdb.2018.01.009.
补充文件
