Assessment of avalanche runout distance at Krasnaya Polyana in the absence of direct observational data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The purpose of this work was the effort to estimate the distance of snow avalanche runout on the undeveloped slope of the Aibga ridge in Krasnaya Polyana using the landscape-indicative method together with statistical analysis and numerical simulation. The approach to solving this problem is considered, combining: analysis of snow depth data and information about avalanches in the adjacent territory, identification of phyto-indicative evidences of the avalanche activity obtained during field observations and analysis of remote sensing data. The article describes in details each of the methods used, as well as contributions of them to the general methodology for estimating the runout range and the boundaries of areas of the avalanche distribution. The analysis of Earth remote sensing data, taking account of results of field surveys of key sites, was based on the landscape-indication method, which allowed us to determine the boundaries of areas of the impact of avalanches with different occurrences basing on observations of the vegetation changes. In addition, the distances of the avalanche runouts were calculated using graph-analytic method (SP 428.1325800.2018) and the RAMMS model. The results of the study show that several methods used in this work complement each other and provide more reasonable and accurate estimation of the avalanche range and the lateral boundaries of distribution of them. That is important for a territorial planning, making design decisions and choosing measures to ensure the safety of people and infrastructure objects if any recreational development of the territory is to be considered.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Zhukova

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: zhukova.geo@mail.ru
Ресей, Moscow

A. Turchaninova

Lomonosov Moscow State University

Email: zhukova.geo@mail.ru
Ресей, Moscow

N. Kovalenko

Lomonosov Moscow State University

Email: zhukova.geo@mail.ru
Ресей, Moscow

D. Petrakov

Lomonosov Moscow State University

Email: zhukova.geo@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Akif’eva K.V. Metodicheskoe posobie po deshifrirovaniyu aerofotosnimkov pri izuchenii lavin. Study guide on aerial photographs decommutation in avalanche research. Leningrad: GIMIZ, 1980: 49 p. [In Russian].
  2. Atlas snezhno-ledovykh resursov mira: V. 2. Book 1 / Ed. by V.M. Kotlyakov. Atlas of snow and ice resources of the world. Moscow: Russian Academy of Sciences, 1997: 98–105 [In Russian].
  3. Blagoveshchenskii V.P. Opredelenie lavinnykh nagruzok. Estimation of avalanches’ loads. Alma-Ata: «Gylym», 1991: 115 p. [In Russian].
  4. Bozhinskiy A.N., Losev K.S. Osnovy lavinovedeniya. Fundamentals of avalanche science: Leningrad: GIMIZ, 1987: 280 p. [In Russian].
  5. Geografiya lavin / Ed. by S.M. Myagkov, L.A. Kanaev. Avalanche geography. Moscow: Moscow University Press, 1992: 332 p. [In Russian].
  6. Zarudnev V.M., Salpagarov A.D., Il’ichev Yu.G., Khoma I.I. Snezhnye laviny Zapadnogo Kavkaza. Snow avalanches of the Western Caucasus. Stavropol: Orfey, 2004: 192 p. [In Russian].
  7. KAVKAZ.RF. Retrieved from: https://кавказ.рф Last access: September 26, 2024.
  8. Kazakov N.A., Gensiorovsky Yu.V., Kazakova E.N. Avalanche processes in the Mzimta river basin and anti-avalanche protection problems of the olympic objects in Krasnaya Polyana. GeoRisk. GeoRisk. 2012, 2: 10–29 [In Russian].
  9. Kazakova E.N., Bobrova D.A., Kazakov N.A. Problems of underestimating avalanche hazards as a cause of avalanche catastrophes. Chetvertye Vinogradovskie chteniya. Gidrologiya ot poznaniya k mirovoszreniyu. 2020: 274–279 [In Russian].
  10. Kozik S.M. Raschet dvizheniya snezhnykh lavin. Calculation of snow avalanche movement. Leningrad: GIMIZ, 1962: 76 p. [In Russian].
  11. Korovina D.I., Turchaninova A.S., Sokratov S.A. Assessment of the effectiveness of avalanche mitigation measures at the Krasnaya Polyana ski resort. Led i Sneg. Ice and Snow. 2021, 61 (3): 359–376 [In Russian].
  12. Nauchno-prikladnoy spravochnik «Klimat Rossii» 2000-2011-2024 VNIIGMI-MTSD. Scientific and Applied Reference Book “Climate of Russia” 2000-2011-2024 VNIIGMI-MCD [In Russian].
  13. Oleynikov A.D. Snowiness of winters in the Krasnaya Polyana area (Western Caucasus). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. The Bulletin of Moscow University. Series 5. Geography. 2010: 2, 39–45 [In Russian].
  14. Oleynikov A.D., Volodicheva N.A. Winters of avalanche maximum on the Greater Caucasus during the period of instrumental observations (1968–2016). Led i Sneg. Ice and Snow. 2020, 60 (4): 521–532 [In Russian].
  15. Pogorelov A.V. Snezhnoy pokrov Bol’shogo Kavkaza. Snow cover of the Greater Caucasus. Moscow: IKTs Akademkniga, 2002: 287 p. [In Russian].
  16. Raspisanie Pogody. Retrieved from: https://rp5.ru/ Last access: October 1, 2024.
  17. Rodionova P.M., Turchaninova A.S., Sokratov S.A., Seliverstov Yu.G., Glazovskaya T.G. Methodology for assessing avalanche hazards in territorial planning in Russia. Led i Sneg. Ice and Snow. 2019, 59 (2): 245–257. https://doi.org/10.15356/2076-6734-2019-2-398 [In Russian].
  18. SP 428.1325800.2018 “Inzhenernye izyskaniya dlya stroitel’stva v lavinoopasnyh rajonah. Obshchie trebovaniya”. SP 428.1325800.2018 “Engineering survey for construction in snow avalanches-endangered regions. General requirements”. Moscow: Ministry of Construction, Housing and Utilities of Russia, 2019, 4: 58 p. [In Russian].
  19. Troshkina E.S. Lavinnyi regim gornykh territorii SSSR (Itogi nauki i tekhniki; Ser. Glaciologiya 11). Avalanche regime of the mountain territories of the USSR (Outcomes of science and technology; ser. glaciology 11). Ed. K.S. Losev. Moscow: VINITI, 1992: 184 p. [In Russian].
  20. Turchaninova A.S., Seliverstov Y.G., Glazovskaya T.G. Modeling of snow avalanches using RAMMS in Russia. GeoRisk. 2015, 4: 42–47 [In Russian].
  21. Bartelt P., Bühler Y., Christen M., Deubelbeiss Y., Salz M., Schneider M., Schumacher L. RAMMS User Manual v 1.7.0 Avalanche. Davos: SLF. 2017, 5: 97 p.
  22. Christen M., Bartelt P., Kowalski J. RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology. 2010, 63 (1–2): 1–14.
  23. Lied K., Bakkehøi S. Empirical calculations of snow–avalanche run–out distance based on topographic parameters. Journal of Glaciology. 1980, 26 (94): 165–177.
  24. Perla R., Cheng T.T., McClung D.M. A two-parameter model of snow-avalanche motion. Journal of Glaciology. 1980, 26 (94): 197–207.
  25. Salm B. Contribution to avalanche dynamics. Scientific aspects of snow and ice avalanches, Proceedings of the Davos Symposium. Davos, Switzerland, 1965: 199–214.
  26. Voellmy A. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung. 1955, 73 (12): 159–165, (15): 212–217, (17): 246–249, (19): 280–285.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The undeveloped northern slope of the Aibga ridge, on which avalanche sweeps are clearly visible. Photo by A.S. Turchaninova, March 2022

Жүктеу (608KB)
3. Fig. 2. Vegetation types identified from the mosaic of orthophotos (the upper part of the study area is an orthophoto from 2014, the lower part is an orthophoto from 2021). Numbers indicate the following areas: 1 – without vegetation; 2 – grassland; 3 – shrubs and curvilinear forest; 4 – beech forest; 5 – fir forest; 6 – site boundary. The asterisk on the inset diagram shows the location of the site under consideration. Esri, Maxar, Earthstar Geographics, and the GIS User Community

Жүктеу (2MB)
4. Fig. 3. (а) Snow cover height in the “Rosa Khutor” cirque from 2008 to 2022 at an absolute altitude of about 2100 m: 1 – 2008/09; 2 – 2009/10; 3 – 2010/11; 4 – 2011/12; 5 – 2012/13; 6 – 2013/14; 7 – 2014/15; 8 – 2015/16; 9 – 2016/17; 10 – 2017/18; 11 – 2018/19; 12 – 2019/20; 13 – 2020/21; 14 – 2021/22. (б) Probability of maximum values of snow height increase (cm) during a three-day snowfall in the study area (в) Maximum snow height increases during a three-day snowfall: 1 – 2008/09; 2 – 2009/10; 3 – 2010/11; 4 – 2011/12; 5 – 2012/13; 6 – 2013/14; 7 – 2014/15; 8 – 2015/16; 9 – 2016/17; 10 – 2017/18; 11 – 2018/19; 12 – 2019/20; 13 – 2020/21; 14 – 2021/22

Жүктеу (868KB)
5. Fig. 4. (а) Vegetation map: 1 – site boundary; 2 – absence of vegetation; 3 – mixed grass with the age of about 1 year; 4 – shrubs and brushwood with the age of less than 5 years; 5 – mature beech forest with the age of more than 30 years; 6 – mature fir forest over 50 years old (б) Maximum avalanche pressure values calculated in RAMMS: 1 – site boundary; 2 – avalanche release zones; 3 – avalanche danger zone calculated with RAMMS; maximum pressure of modeled avalanches, kPa: 4 – less than 1; 5 – 1–3; 6 – 3–30; 7 – 30–100; 1 – more than 100 (в) Avalanche run-out distance: 1 – site boundary; 2 – avalanche release zones; 3 – avalanche danger zone calculated with RAMMS; 4 – profiles for calculating the avalanche run-out distance according to SP 428.1325800.2018; the numbers on the map indicate areas of interest

Жүктеу (1MB)
6. Fig. 5. Damaged trunks of young beech forest. Photo by D.A. Petrakov, October 2022

Жүктеу (1MB)


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.