Fractionation of ground-level aerosol from IR radiation of snow surface: observations in the Tomsk region

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The article analyzes the results of measurements of the aerosol count concentration in the surface air in the range from 0.3 to 20.0 μm in 15 intervals. The measurements were carried out using a Grimm 1.108 aerosol spectrometer installed at the Fonovaya observatory (IAO SB RAS, Tomsk). The calculation of the statistical parameters of the distribution of surface aerosol fractions was carried out using a sample compiled on the basis of a continuous series of measurements within the time interval from 11/17/2022 to 01/30/2023. The sample size was 1799 hourly observations. A service program was written to work with the sample, as well as to visualize the calculations. The features of the effect of photophoretic forces on the average daily dynamics of the fractional distribution of aerosol particles in the surface layer were assessed in conjunction with the analysis of reverse trajectories of transport of moisture-bearing air masses and taking into account the time intervals of snow accumulation at the Fonovaya observatory in the first half of winter 2022/23. A certain relationship was established between the increase in the number concentration of particles in the range of 0.3–2.0 μm and the effect of photophoretic forces in different phases of snow cover growth associated with the fall of stratigraphically significant snowfalls. It is postulated and proven that the cause of this phenomenon is the levitation of particles in the field of infrared radiation leaving the surface of the snow, caused by the action of “snow” photophoresis. Obviously, this circumstance should be taken into account when constructing transport models of vertical transport of aerosols in the lower troposphere. In addition, “snow” photophoresis during breaks between snowfalls and during anticyclonic weather conditions can be considered as one of the potentially significant mechanisms for increasing the concentration of pollutants on the snow surface and in the ground air.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Tentyukov

V.E. Zuev Institute of Atmospheric Optics SB RAS; Pitirim Sorokin Syktyvkar State University

Хат алмасуға жауапты Автор.
Email: tentukov@yandex.ru
Ресей, Tomsk; Syktyvkar

D. Timushev

FRC Komi SС UВ RAS

Email: tentukov@yandex.ru

Physics and Mathematics Institute

Ресей, Syktyvkar

D. Simonenkov

V.E. Zuev Institute of Atmospheric Optics SB RAS

Email: tentukov@yandex.ru
Ресей, Tomsk

B. Belan

V.E. Zuev Institute of Atmospheric Optics SB RAS

Email: tentukov@yandex.ru
Ресей, Tomsk

K. Shukurov

A.M. Obukhov Institute of Atmospheric Physics RAS

Email: tentukov@yandex.ru
Ресей, Moscow

A. Kozlov

V.E. Zuev Institute of Atmospheric Optics SB RAS

Email: tentukov@yandex.ru
Ресей, Tomsk

E. Yazikov

National Research Tomsk Polytechnic University

Email: tentukov@yandex.ru
Ресей, Tomsk

V. Buchelnikov

National Research Tomsk Polytechnic University

Email: tentukov@yandex.ru
Ресей, Tomsk

A. Yakovlev

Pitirim Sorokin Syktyvkar State University

Email: tentukov@yandex.ru
Ресей, Syktyvkar

Әдебиет тізімі

  1. Beresnev S.A., Kochneva L.B., Suetin P.E., Zakharov V.I., Gribanov K.G. Photophoresis of atmospheric aerosols in the Earth’s thermal radiation field. Optika Atmosfery i Okeana. Optics of the Atmosphere and Ocean. 2003, 16 (5–6): 470–477. [In Russian].
  2. Boren K., Huffman D. Pogloshcheniye i rasseyaniye sveta malymi chastitsami. Absorption and Scattering of Light by Small Particles. Moscow: Mir, 1986: 664 p. [In Russian].
  3. Gorchakov G.I., Koprov B.M., Shukurov K.A. Study of the removal of submicron aerosol from the underlying surface. Optika Atmosfery i Okeana. Optics of the Atmosphere and Ocean. 2000, 13 (2): 166–169 [In Russian].
  4. Zuev V.E., Kuzikovskiy A.V., Pogodaev V.A., Chistyakova L.K. Thermal effect of optical radiation on small water droplets. Dokl. AN SSSR. Reports of the USSR Academy of Sciences. 1972, 205 (5): 1069–1072 [In Russian].
  5. Kovalev F.D. Eksperimental’noye issledovaniye fotoforeza v gazakh. Experimental study of photophoresis in gases. Abstract of the PhD thesis. Ekaterinburg: Ur. State University named after A.M. Gorky, 2003: 24 p. [In Russian].
  6. Kozhevnikov V.N. Vozmushcheniya atmosfery pri obtekanii gor. Atmospheric Disturbances During Flow Around Mountains. Moscow: Scientific World, 1999: 160 p. [In Russian].
  7. Kochneva L.B. Mikrofizicheskiye opticheskiye kharakteristiki i fotoforez atmosfernykh aerozoley. Microphysical optical characteristics and photophoresis of atmospheric aerosols. Abstract of the PhD thesis. Ekaterinburg: Ur. State University named after A.M. Gorky, 2007: 24 p. [In Russian].
  8. Kushnarenko A.V. Razrabotka modeli i algoritmov raschota fotoforeticheskogo vzaimodeystviya aerozol’nykh chastits i klasterov v razrezhennoy gazovoy srede na osnove metoda Monte-Karlo. Development of a model and algorithms for calculating the photophoretic interaction of aerosol particles and clusters in a rarefied gas environment based on the Monte Carlo method. PhD thesis. Krasnoyarsk: Federal State Autonomous Educational Institution of Higher Education “Siberian Federal University”, 2019: 103 p. [In Russian].
  9. Markov M.G. Teoreticheskoye issledovaniye vliyaniya termodiffuzioforeza i fotoforeza na evolyutsiyu atmosfernogo aerozolya. Theoretical study of the influence of thermal diffusion and photophoresis on the evolution of atmospheric aerosol. PhD thesis. Obninsk: Phys.-energy Institute, 1985: 179 p. [In Russian].
  10. Prishivalko A.P. Opticheskiye i teplovyye polya vnutri svetorasseivayushchikh chastits. Optical and thermal fields inside light-scattering particles. Minsk: Science and Technology, 1983: 190 p. [In Russian].
  11. Simonova G.V., Kalashnikova D.A., Markelova A.N., Bondarenko A.S., Davydkina A.E. Variations in the isotopic composition of oxygen and hydrogen in atmospheric precipitation in Tomsk (2016–2020). Optika Atmosfery i Okeana. Atmospheric and Oceanic Optics. 2023, 36 (7): 595–601. https://ao.iao.ru/en/content/vol.36-2023/iss.07/9 [In Russian].
  12. Sokratov S.A., Troshkina E.S. Development of structural-stratigraphic studies of snow cover. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2009, 107: 103–9 [In Russian].
  13. Surdin V.G. Photometric paradox of Olbers. 2001. Retrieved from: URL: https://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/FOTOMETRICHESKI_PARADOKS_OLBERSA.html (Last access: August 13, 2021) [In Russian].
  14. Tentyukov M.P., Belan B.D., Simonenkov D.V., Mikhailov V.I. Formation of secondary organic aerosols on the surface of needles and their entry into the winter forest canopy under the influence of radiometric photophoresis. Optika Atmosfery i Okeana. Optics of the Atmosphere and Ocean. 2022, 35 (5): 916–23. https://doi.org/10.15372/AOO202205 [In Russian].
  15. Horvat L. Kislotnyy dozhd’. Acid rain. Transl. from Hungarian, Ed. Yu.N. Mikhailovsky. Moscow: Stroyizdat, 1990: 80 p. [In Russian].
  16. Fierz S., Armstrong R.L., Duran I., Etkhevi P., Green I., McClung D.M., Nishimura K., Satyavali P.K., Sokratov S.A. International classification for seasonally falling snow (a guide to the description of snow thickness and snow cover). Materialy Glyatsiologicheskikh Issledovaniy. Data of glaciological studies. 2012, 2: 80 [In Russian].
  17. Yufa B.A., Gurvich Yu.M. Application of median and quartiles to assess normal and anomalous values of the geochemical field. Geokhimiya. Geochemistry. 1964, 8: 817–824 [In Russian].
  18. Yalamov Yu.I., Khasanov A.S. Photophoresis of large aerosol particles with heterogeneous thermal conductivity. Zhurnal Tekhnicheskoy Fiziki. Journ. of Technical Physics. 1998, 68 (4): 1–6 [In Russian].
  19. Berne B.J., Pecora R. Dynamic Light Scattering. John Wiley and Sons Ltd. 1976: 376 p. https://doi.org/10.1002/bbpc.19770810123 (Last access: August 13, 2021).
  20. Brock J.R. On radiometer forces. Journ. of Colloid and Interface Science. 1967, 25 (4): 564–567.
  21. Chernyak V., Beresnev S. Photophoresis of aerosol particles. Journ. Aerosol. Sci. 1993, 24 (7): 857–866.
  22. Ehrenhaft F. Die Photophorese. Annalen der Physik. 1918, 361 (10): 81–132. https://doi.org/10.1002/andp.19183611002 (Last access: August 13, 2021).
  23. Haywood J., Boucher O. Estimates of direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 2000, 38 (4): 513–43.
  24. Preining O. Photophoresis. In: Aerosol Science. Ed. C.N. Davies. New York: Acad. Press, 1966: 111–135.
  25. Rohatschek H. Direction, magnitude and causes of photophoretic force. Journ. Aerosol Sci. 1985, 16 (1): 29–42.
  26. Rosen M.H., Orr C.J. The photophoretic force. Journ. of Colloid Science. 1964, 19 (1): 50–60.
  27. rp5.ru: official site. Retrieved from: URL: https://rp5.ru/Погода_в_Кожевниково,_Томская_область. (Last access: January 12, 2025).
  28. Shukurov K.A., Simonenkov D.V., Nevzorov A.V., Rashki A., Hamzeh N.H., Abdullaev S.F., Shukurova L.M., Chkhetiani O.C. CALIOP-Based Evaluation of Dust Emissions and Long-Range Transport of the Dust from the Aral−Caspian Arid Region by 3D-Source Potential Impact (3D-SPI) Method. Remote Sens. 2023, 15 (5): 2819. https://doi.org/10.3390/rs15112819
  29. Stössel F., Guala M., Fierz C., Manes C., Lehning M. Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover. Water Resour. Res. 2010, 46 (4): W04511. https://doi.org/10.1029/2009WR008198 (Last access: August 13, 2021).
  30. Thoré M. Le radiomètre d’absorption. Les Mondes. 1877, 42: 585–586.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Intra-day dynamics of the countable concentration of ground-level aerosol (morning values coinciding with the beginning of sunrise are highlighted in red) over the “Fonovaya” observatory: 7 – July 2022, 8 – August 2022, 9 – September 2022, 10 – October 2022, 11 – November 2022, 12 – December 2022, 1 – January 2023, 2 – February 2023, 3 – March 2023, 4 – April 2023, 5 – May 2023, 6 – June 2023

Жүктеу (647KB)
3. Fig. 2. Meteorological characteristics chronologically consistent with the dates of stratigraphically significant snowfalls and with the periods of preferential deposition of dry aerosols at the “Fonovaya” observatory (according to data from the “Kozhevnikovo” w/s). (a) SumRR integral curve of snow thickness growth in water equivalent, (mm) with marks of snow accumulation stages (t-periods): I – 17.11– 05.12.22; II – 05.12–14.12.22; III – 14.12–19.12.22; IV – 19.12 – 27.12.22; V – 27.12.22–09.12.23; VI – 09.12–17.12.23; VII – 17.01–24.01.23; VIII – 24.01–30.01.23, associated with the structural and textural characteristics of the snow profile, where: H, cm – height of snow cover, E, mm – size, and F – shape of snow grains: 1 – freshly fallen snow; 2 – recently deposited snow with rounded grains; 3 – fine-grained snow with rounded grains; 4 – rounded snow grains and cut grains; 5 – glaciated layer; 6 – cut grains; 7 – depth hoar, 8 – layer-by-layer sampling scale. Legend follows (Fierz et al., 2012); (б) snowfall intensity (R, mm, in mm of water equivalent)

Жүктеу (387KB)
4. Fig. 3. Diurnal dynamics of the distribution of the particle count concentration in the aerosol field above the Fonovaya observatory in winter 2022/23 in t-periods I – 17.11– 05.12.22; II – 05.12–14.12.22; III – 14.12–19.12.22; IV – 19.12–27.12.22; V – 27.12.22–09.12.23; VI – 09.12–17.12.23; VII – 17.01–24.01.23; VIII – 24.01–30.01.23

Жүктеу (895KB)
5. Fig. 4. Layered paired diagrams of the probability of air mass transfer, (P, %) at 20 levels arriving in the 100–2100 m layer (left parts of the paired diagrams) and only for sections of trajectories that entered the atmospheric boundary layer (right parts of the paired diagrams) both above the Fonovaya observatory and along the entire length of the trajectories, chronologically tied to t-periods: I – 17.11– 05.12.22; II – 05.12–14.12.22; III – 14.12–19.12.22; IV – 19.12 – 27.12.22; V – 27.12.22–09.12.23; VI – 09.12–17.12.23; VII – 17.01–24.01.23; VIII – 24.01–30.01.23

Жүктеу (953KB)
6. Fig. 4. Continued

Жүктеу (1MB)


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.