Northern margin of the Barents Sea shelf after the Little Ice Age: variability of the drift ice edge and sedimentation dynamics
- Autores: Ilyin G.V.1, Meshcheryakov N.I.1, Usyagina I.S.1, Kokin O.V.2
-
Afiliações:
- Murmansk Marine Biological Institute of the Russian Academy of Sciences
- Geological Institute of the Russian Academy of Sciences
- Edição: Volume 65, Nº 2 (2025)
- Páginas: 295-314
- Seção: Sea, river and lake ices
- URL: https://journals.eco-vector.com/2076-6734/article/view/688409
- DOI: https://doi.org/10.31857/S2076673425020084
- EDN: https://elibrary.ru/FOWMDZ
- ID: 688409
Citar
Texto integral



Resumo
This paper presents the results of a study of the bottom sediments of the northern margin of the Barents Sea shelf, carried out within the framework of the Transarctic 2019 expedition. The exposed bottom sediments with a thickness of 11 to 18 cm began to form approximately 300–400 years ago. The sedimentary strata are composed of pelite and siltstone fractions with local periodic inclusions of coarse-grained particles. After the Little Ice Age (LIA), sedimentation rates in the area of the northern margin of the Barents Sea shelf varied in time and space from 0.04 to 0.19 cm/year, with average values of 0.04–0.1 cm/year. The main factor of sedimentation north of the strait between Spitsbergen and Franz Josef Land is ice and iceberg spread of terrigenous sediments. Chronostratigraphic studies indicate a significant impact of global climate change on the sedimentation regime in the northern Barents Sea shelf after the end of the LIA in the late 18th – early 19th centuries. The periodicity of changes is close to climatic periods of 50–60 years. However, in the direction from southwest to northeast, there is a lag of peaks of approximately 20 years (according to our observations of the structure of the sedimentary cover and the intensity of sedimentation). Due to local changes in the sedimentation regime after the LIA, three areas have been identified that differ in the response of sedimentogenesis to climate change: 1) the high response area – the northeast of the Spitsbergen archipelago; 2) the moderate response zone – the northern shelf of the Franz Josef Land archipelago; 3) the low response zone – Franz Victoria Trench area.
Palavras-chave
Texto integral

Sobre autores
G. Ilyin
Murmansk Marine Biological Institute of the Russian Academy of Sciences
Email: meshcheriakov104@mail.ru
Rússia, Murmansk
N. Meshcheryakov
Murmansk Marine Biological Institute of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: meshcheriakov104@mail.ru
Rússia, Murmansk
I. Usyagina
Murmansk Marine Biological Institute of the Russian Academy of Sciences
Email: meshcheriakov104@mail.ru
Rússia, Murmansk
O. Kokin
Geological Institute of the Russian Academy of Sciences
Email: meshcheriakov104@mail.ru
Rússia, Moscow
Bibliografia
- Andreeva I.A., Lapina N.N. Metodika granulometricheskogo analiza donnyh osadkov Mirovogo okeana i geologicheskaya interpretaciya rezul’tatov laboratornogo izucheniya veshchestvennogo sostava osadkov. Methods of granulometric analysis of bottom sediments of the World Ocean and geological interpretation of the results of laboratory study of the material composition of sediments. St. Petersburg: VNIIOkeangeologiya, 1998: 45 p. [In Russian].
- Zhichkin A.P. Ice conditions in the area of the Franz Josef Land archipelago. Proceedings of the Kola Scientific Center. Transactions of the Kola Science Center of the Russian Academy of Sciences. 2014, 4 (23): 82–89 [In Russian].
- Klenova M.V. Geology of the Barents Sea. Moscow: USSR Academy of Sciences, 1960: 367 p.
- Krylov A.A., Malyshev S.A., Bogin V.A., Zakharov V.Yu., Gusev E.A., Makarov A.S. Features of the coarse clasts (psephites) distribution in the Upper Quaternary sediments of the northern Barents Sea. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2020, 66 (3): 381–395. https://doi.org/10.30758/05552648-2020-66-3-381-395 [In Russian].
- Levitan M.A., Syromyatnikov K.V., Kuz’mina T.G. Lithological and geochemical characteristics of recent and Quaternary sedimentation in the Arctic Ocean. Geohimiya. Geochemistry International. 2012, 50 (7): 559–573. https://doi.org/10.1134/S001670291207004X [In Russian].
- Lisitsyn A.P. Ledovaya sedimentaciya v Mirovom okeane. Ice sedimentation in the World Ocean. Moscow: Nauka, 1994: 448 p. [In Russian].
- Marchenko N.A. Special study of ice drifting in Barents Sea. Vesti gazovoj nauki. Bulletin of Gas Science. 2018, 4 (36): 166–179 [In Russian].
- Matishov D.G., Matishov G.G. Radiacionnaya ekologicheskaya okeanologiya. Radioecology in Northern European Seas. Apatites: Publishing house Murmansk Marine Biological Institute, 2001: 417 [In Russian].
- Matishov G.G., Ilyin G.V. Strontium-90 in seawater and bottom sediments of the Barents sea shelf (2000–2019). Reports of the Russian Academy of Sciences. Earth Sciences. 2022, 505 (2): 565–571. https://doi.org/10.1134/s1028334x22080116 [In Russian].
- Mirzoeva N.Y., Gulin S.B., Sidorov I.G., Gulina L.V. Estimation of sedimentation and sedimentation rates in the coastal and deep-water areas of the Black Sea using naturaland anthropogenic (Chernobyl) radionuclides. Moscow: Scientific world, 2018: 659–670. https://doi.org/10.29006/978-5-91522-473-4.2018.659 [In Russian].
- Novigatsky A.N., Klyuvitkin A.A., Lisitzin A.P. Sedimentation rates, vertical flows of matter, and absolute precipitation masses in the Russian Arctic shelf area. Okeanologicheskie issledovaniya. Oceanological research. 2018, 46 (2): 167–179. https://doi.org/10.29006/1564-2291.JOR-2018.46(2).12 [In Russian].
- Puti migracii radionuklidov v okruzhayushchej srede. Radioekologiya posle Chernobylya. Migration routes of radionuclides in the environment. Radioecology after Chernobyl. Moscow: Mir, 1999: 512 [In Russian].
- Rusakov V.Yu., Borisov A.P., Solovyova G.Yu. Sedimentation on the siberian arctic shelf as an indicator of the arctic hydrological cycle. Geohimiya. Geochemistry. 2019, 64 (11): 1158–1174 [In Russian].
- Rusakov V.Yu., Borisov A.P., Solovyova G.Yu. Sedimentation rates (according to isotopic analysis of and ) in different facies-genetic types of bottom sediments of the Kara Sea. Geochemistry. 2019, 64 (1–11): 1158–1174. https://doi.org/10.31857/S0016-752564111158-1174 [In Russian].
- Sivintsev Yu.V., Vakulovsky S.M., Vasiliev A.P., Vysotsky V.L., Gubin A.T., Danilyan V.A., Kobzev V.I., Kryshev I.I., Lavkovsky S.A., Mazokin V.A., Nikitin A.I., Petrov O.I., Pologikh B.G., Skorik Yu.I. Tekhnogennye radionuklidy v moryah, omyvayushchih Rossiyu. Technogenic Radionuclides in the Seas Surrounding. Russia. Moscow: IzdAT, 2005: 624 p. [In Russian].
- Tarasov G.A., Pogodina I.A., Khasankaev V.B., Kukina N.A., Mityaev M.V. Processy sedimentacii na glyacial’nyh shel’fah. Sedimentation processes on glacial continental shelfes. Apatity: Publishing house of the Kola Scientific Center of the Russian Academy of Sciences, 2000: 473 p. [In Russian]
- Frolov I.E., Ivanov V.V., Filchuk K.V., Makshtas A.P., Kustov V.Yu., Mahotina I.A., Ivanov B.V., Urazgildeeva A.V., Syoemin V.L., Zimina O.L., Krylov A.A., Bogin V.A., Zakharov V.Yu., Malyshev S.A., Gusev E.A., Baryshev P.E., Pilgaev S.V., Kovalev S.M., Turyakov A.B. Transarktika-2019: winter expedition in the Arctic Ocean on the R/V “Akademik Tryoshnikov”. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2019: 65 (3): 255–274 [In Russian].
- Khvostova M.S., Voronkov D.A., Pyhtin A.S. Issues of radioecology of the Arctic Region of Russia. Rossijskaya Arktika. Russian Arctic. 2019, 4: 58–71. https://doi.org/10.24411/2658-4255-2018-00006 [In Russian].
- Shevchenko V.P. The role of aeolian and ice transport of matter in modern sedimentation in the Arctic. Conceptual problems of lithological studies in Russia. Proceedings of the All-Russian lithological conference (Kazan, September 26–30, 2011). V. II. Kazan: Kazan University, 2011: 476–480.
- Shevchenko V.P. Effect of aerosols on the environment and marine sedimentation in the Arctic. Moscow: Nauka, 2006: 226 p. [In Russian]
- Vody Barenceva morya: struktura, cirkulyaciya, izmenchivost’. The Barents Sea Waters: structure, circulation, variability. Murmansk: Polar Branch of VNIRO Federal State Budgetary Budgetary Institution (N.M. Knipovich PINRO), 2016: 260 p. [In Russian].
- Gidrometeorologiya i gidrohimiya morej SSSR. T. 1. Barencevo more. Vyp. 1. Gidrometeorologicheskie usloviya. Hydrometeorology and hydrochemistry of the seas of the USSR. Vol. 1. The Barents Sea. Issue 1. Hydrometeorological conditions. Leningrad: Hydrometeoizdat, 1990: 280 p. [In Russian].
- Abril J.M. On the use of -based records of sedimentation rates and activity concentrations for tracking past environmental changes. Journ. of Environmental Radioactivity. 2022, 244–245: 106823 https://doi.org/10.1016/j.jenvrad.2022.106823
- Aliev R.A., Bobrov V.A., Kalmykov S.N., Melgunov M.S., Vlasova I.E., Shevchenko V.P. Natural and artificial radionuclides as a tool for sedimentation studies in the Arctic region. Journ. Radioanal. Nucl. Chem. 2007, 274 (2): 15–321. https://doi.org/10.1007/s10967-007-1117-x
- Appleby P.G. dating by low-background gamma. Hydrobiologia. 1986, 143: 21–27. https://link.springer.com/article/10.1007/BF00026640
- Divine D.V., Dick C. March through August Ice Edge Positions in the Nordic Seas, 1750–2002. Version 1. Boulder, Colorado, USA: NSIDC: National Snow and Ice Data Center, 2007. https://doi.org/10.7265/N59884X1 (Last access: October 7, 2024).
- Fetterer F., Knowles K., Meier W.N., Savoie M., Windnage A.K. Sea Ice Index (G02135, Version 3). Boulder, Colorado, USA: National Snow and Ice Data Center, 2017. Retrieved from: URL: https://doi.org/10.7265/N5K072F8 (Last access: October 10, 2024).
- Khalturin V.I., Rautian T.G., Richards P.G., Leith W.S. A Review of Nuclear Testing by the Soviet Union at Novaya Zemlya, 1955–1990 . Science & Global Security: The Technical Basis for Arms Control, Disarmament, and Nonproliferation Initiatives. 2005, 13 (1–2): 1–42. https://doi.org/10.1080/08929880590961862
- Lind S., Ingvaldsen R.B. Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Research. 2012, 62: 70–88. https://doi.org/10.1016/j.dsr.2011.12.007
- Meshcheriakov N.I., Usyagina I.S., Namyatov A.A., Tokarev I.V. Stratigraphic Chronology and Mechanisms of Formation of Bottom Sediments at the Mouth of the Grøndalen River (Grøn-Fjord, West Spitsbergen) during the Period of Climatic Changes. Stratigraphy and Geological Correlation. 2024, 32 (5): 631–645. https://doi.org/10.1134/S0869593824700151
- NOAA: official site. Retrieved from: URL: https://noaadata.apps.nsidc.org/NOAA/ (Last access: January 12, 2025).
- Sanchez-Cabeza J.A., Ruiz-Fernández A.C. sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta. 2012, 82: 183–200. https://doi.org/10.1016/j.gca.2010.12.024
- Stein R. Arctic Ocean sediments. Processes, proxies and paleoenvironment. Amsterdam: Elsevier, 2008, 2: 592 p.
- Underhill V., Fetterer F., Petersen C. Arctic Sea Ice Concentration and Extent from Danish Meteorological Institute Sea Ice Charts. 1901–1956. 2014. Version 1.1. Boulder, Colorado, USA: NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5MP517M (Last access: October 7, 2024).
Arquivos suplementares
