ПРОСТРАНСТВЕННО-ВРЕМЕННÁЯ НЕОДНОРОДНОСТЬ ЗНАЧЕНИЙ Δ18O И СТРУКТУРЫ СНЕЖНОЙ ТОЛЩИ НА ТЕРРИТОРИИ МЕТЕООБСЕРВАТОРИИ МГУ
- Авторы: Сократов С.А.1, Комаров А.Ю.1, Васильчук Ю.К.1, Буданцева Н.А.1, Васильчук Д.Ю.1, Селиверстов Ю.Г.1, Гребенников П.Б.1, Фролов Д.М.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 63, № 4 (2023)
- Страницы: 569-582
- Раздел: Снежный покров и снежные лавины
- URL: https://journals.eco-vector.com/2076-6734/article/view/659325
- EDN: https://elibrary.ru/IEPIBP
- ID: 659325
Цитировать
Полный текст
Аннотация
Представлены результаты сравнения изотопного состава (значений δ18O) разновозрастных слоёв снега, слагающих снежную толщу к моменту максимального водозапаса, с изотопным составом осадков, сформировавших эти слои в течение зимнего сезона 2018/19 г. на территории метеообсерватории МГУ. Установлено, что ожидаемое утяжеление изотопного состава от времени выпадения до времени отбора образцов практически не зависело от возраста слоёв.
Об авторах
С. А. Сократов
Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: sokratov@geogr.msu.ru
Россия, Москва
А. Ю. Комаров
Московский государственный университет имени М.В. Ломоносова
Email: sokratov@geogr.msu.ru
Россия, Москва
Ю. К. Васильчук
Московский государственный университет имени М.В. Ломоносова
Email: sokratov@geogr.msu.ru
Россия, Москва
Н. А. Буданцева
Московский государственный университет имени М.В. Ломоносова
Email: sokratov@geogr.msu.ru
Россия, Москва
Дж. Ю. Васильчук
Московский государственный университет имени М.В. Ломоносова
Email: sokratov@geogr.msu.ru
Россия, Москва
Ю. Г. Селиверстов
Московский государственный университет имени М.В. Ломоносова
Email: sokratov@geogr.msu.ru
Россия, Москва
П. Б. Гребенников
Московский государственный университет имени М.В. Ломоносова
Email: sokratov@geogr.msu.ru
Россия, Москва
Д. М. Фролов
Московский государственный университет имени М.В. Ломоносова
Email: sokratov@geogr.msu.ru
Россия, Москва
Список литературы
- Borodulina G.S., Tokarev I.V., Levichev M.A. Isotopic composition (δ18O, δ2H) of Karelian snow cover. Led i Sneg. Ice and Snow. 2021, 61 (4): 521–532 [In Russian]. https://doi.org/10.31857/S2076673421040105
- Vasil’chuk Yu.K., Chizhova Yu.N., Budantseva N.A., Lychagin M.Y., Popovnin V.V., Tkachenko A.N. Isotopic composition of winter snow on the Aibga Ridge (Krasnaya Polyana), Western Caucasus. Arktika i Antarktika. Arctic and Antarctic. 2017, (3): 99–118 [In Russian]. https://doi.org/10.7256/2453-8922.2017.3.24402
- Ekaykin A.A., Vladimirova D.O., Tebenkova N.A., Brovkov E.V., Veres A.N., Kovyazin A.V., Kozachek A.V., Lindren M., Shibaev Yu.A., Preobrazhenskaya A.V., Lipenkov V.Ya. Spatial variability of snow isotopic composition and accumulation rate at the stake farm of Vostok station (Central Antarctica). Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2019, 65 (1): 46–62 [In Russian]. https://doi.org/10.30758/0555-2648-2019-65-1-46-62
- Ekaykin A.A., Lipenkov V.Ya., Sokratova I.N., Preobrazhenskaya A.V. Isotopic composition of snow and ice in Antarctica: Climate signal and post-depositional noise. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2007, 2 (76): 96–105 [In Russian].
- Zykin N.N., Tokarev I.V., Vinograd N.A. Monitoring of stable isotopes (δ2H, δ18O) in precipitations of Moscow (Russia): Comparison for 2005–2014 and 1970–1979 periods. Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle. Vestnik of Saint Petersburg University. Earth Sciences. 2021, 66 (4): 723–733 [In Russian]. https://doi.org/10.21638/spbu07.2021.405
- Fierz Ch., Armstrong R.L., Durand Y., Etchevers P., Greene E., McClung D.M., Nishimura K., Satyawali P.K., Sokratov S.A. International classification for seasonally falling snow (a guide to the description of snow thickness and snow cover) Russian edition (Data of Glaciological Studies, 2012–2). International classification for seasonally falling snow (a guide to the description of snow thickness and snow cover) Russian edition (Data of Glaciological Studies, 2012–2). Moscow: Institute of Geography RAS, Glaciological Association, 2012: 80 [In Russian].
- Frolov D.M., Komarov A.Yu., Seliverstov Yu.G., Sokratov S.A., Turchaninova A.S., Grebennikov P.B. Study of spatial-temporal heterogeneity of snow cover at the territory of MO MSU in Winter 2018/2019. Ekologo-klimaticheskie harakteristiki atmosfery Moskvy v 2018 g. po dannym Meteorologicheskoj observatorii MGU imeni M.V. Lomonosova. Environmental and climate characteristics of the atmosphere in Moscow in 2018 according to the measurements of the Moscow State University Meteorological Observatory. Moscow: MAKS Press, 2019. 225–230 [In Russian].
- Chizhova Ju.N., Vasil’chuk Yu.K. Deuterium excess in the snow and glaciers of the Polar Ural and massive ice of the south of the Yamal Peninsula and the coast of Baydaratskaya Bay. Arktika i Antarktika. Arctic and Antarctic. 2017, (2): 100–111 [In Russian]. https://doi.org/10.7256/2453-8922.2017.2.23342
- Chizhova Yu.N., Mikhalenko V.N., Vasil’chuk Yu.K., Budantseva N.A., Kozachek A.V., Kutuzov S.S., Lavrentiev I.I. Isotopic composition of oxygen in snow-and-firn thickness on the Eastern peak of Elbrus, the Caucasus. Led i Sneg. Ice and Snow. 2019, 59 (3): 293–305 [In Russian]. https://doi.org/10.15356/2076-6734-2019-3-426
- Ekologo-klimaticheskie harakteristiki atmosfery Moskvy v 2018 g. po dannym Meteorologicheskoj observatorii MGU imeni M.V. Lomonosova. Environmental and climate characteristics of the atmosphere in Moscow in 2018 according to the measurements of the Moscow State University Meteorological Observatory. Moscow: MAKS Press, 2019: 277 [In Russian]. https://doi.org/10.29003/m856.atm-2018
- Ala-aho P., Tetzlaff D., McNamara J.P., Laudon H., Kormos P., Soulsby C. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach. Water Resources Research. 2017, 53 (7): 5813–5830. https://doi.org/10.1002/2017WR020650
- Allen S.T., Jasechko S., Berghuijs W.R., Welker J.M., Goldsmith G.R., Kirchner J.W. Global sinusoidal seasonality in precipitation isotopes. Hydrology and Earth System Sciences. 2019, 23 (8): 3423–3436. https://doi.org/10.5194/hess-23-3423-2019
- Beria H., Larsen J.R., Ceperley N.C., Michelon A., Vennemann T., Schaefli B. Understanding snow hydrological processes through the lens of stable water isotopes. WIREs Water. 2018, 5 (6): e1311. https://doi.org/10.1002/wat2.1311
- Cooper L.W. Isotopic fractionation in snow cover. In Kendall C., McDonnell J.J. (Eds.) Isotope tracers in catchment hydrology. New York: Elsevier Sci., 1998: 119–136. https://doi.org/10.1016/B978-0-444-81546-0.50011-2
- Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16 (4): 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
- Dietermann N., Weiler M. Spatial distribution of stable water isotopes in alpine snow cover. Hydrology and Earth System Sciences. 2013, 17 (7): 2657–2668. https://doi.org/10.5194/hess-17-2657-2013
- Ebner P.P., Steen-Larsen H.C., Stenni B., Schneebeli M., Steinfeld A. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions. The Cryosphere. 2017, 11 (4): 1733–1743. https://doi.org/10.5194/tc-11-1733-2017
- Environmental Isotopes in the Hydrological Cycle. Principles and Applications (IHP-V IAEA Technical Documents in Hydrology, No. 39). V. 1. Ed. W.G. Mook. IAEA, UNESCO, 2001 (reprint [2020]): 164 p.
- Koeniger P., Hubbart J.A., Link T., Marshall J.D. Isotopic variation of snow cover and streamflow in response to changes in canopy structure in a snow-dominated mountain catchment. Hydrological Processes. 2008, 22 (4): 557–566. https://doi.org/10.1002/hyp.6967
- Konishchev V.N., Golubev V.N., Sokratov S.A. Sublimation from a seasonal snow cover and an isotopic content of ice wedges in the light of a palaeoclimate reconstruction. In Phillips M., Springman S.M., Arenson L.U. (Eds.) ICOP 2003. Permafrost. Proceedings of the Eighth International Conference on Permafrost, 21–25 July 2003, Zürich, Switzerland. Vol. 1. Lisse: Swets & Zeitlinger, 2003: 585–590.
- Kozachek A., Mikhalenko V., Masson-Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El’brus ice cores. Climate of the Past. 2017, 13 (5): 473–489. https://doi.org/10.5194/cp-13-473-2017
- Lee J., Feng X., Faiia A.M., Posmentier E.S., Kirchner J.W., Osterhuber R., Taylor S. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical geology. 2010, 270 (1–4): 126–134. https://doi.org/10.1016/j.chemgeo.2009.11.011
- Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. The Cryosphere. 2015, 9 (6): 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
- Penna D., Ahmad M., Birks S.J., Bouchaou L., Brenčič M., Butt S., Holko L., Jeelani G., Martínez D.E., Melikadze G., Shanley J.B., Sokratov S.A., Stadnyk T., Sugimoto A., Vreča P. A new method of snowmelt sampling for water stable isotopes. Hydrological Processes. 2014, 28 (22): 5637–5644. https://doi.org/10.1002/hyp.10273
- Proksch M., Rutter N., Fierz Ch., Schneebeli M. Intercomparison of snow density measurements: bias, precision, and vertical resolution. The Cryosphere. 2016, 10 (1): 371–384. https://doi.org/10.5194/tc-10-371-2016
- Sturm M., Holmgren J., Liston G.L. A seasonal snow cover classification system for local to global applications. Journ. of Climate. 1995, 8 (5 (Part 2)): 1261–1283. https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
- Taylor S., Feng X., Kirchner J.W., Osterhuber R, Klaue B., Renshaw C.E. Isotopic evolution of a seasonal snowpack and its melt. Water Resources Research. 2001, 37 (3): 759–769. https://doi.org/10.1029/2000WR900341
- Vasil’chuk Yu., Chizhova Ju.N., Budantseva N., Vystavna Yu., Eremina I. Stable isotope composition of precipitation events revealed modern climate variability. Theoretical and Applied Climatology. 2022, 147(3–4): 1649–1661. https://doi.org/10.1007/s00704-021-03900-w
- Vasil’chuk Yu., Chizhova Ju.N., Frolova N., Budantseva N., Kireeva M., Oleynikov A., Tokarev I., Rets E., Vasil’chuk A. A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus. Geography, Environment, Sustainability. 2020, 13 (1): 172–182. https://doi.org/10.24057/2071-9388-2018-22
- Vasil’chuk Yu.K., Vasil’chuk A.C., Budantseva N.A. Holocene January paleotemperature of northwestern Siberia reconstructed based on stable isotope ratio of ice wedges. Permafrost and Periglacial Processes. 2023, 34 (1): 142–165. https://doi.org/10.1002/ppp.2177
- Wahl S., Steen-Larsen H.C., Hughes A.G., Dietrich L.J., Zuhr A., Behrens M., Faber A.-K., Hörhold M. Atmosphere-snow exchange explains surface snow isotope variability. Geophysical Research Letters. 2022, 49 (20): e2022GL099529. https://doi.org/10.1029/2022GL099529
Дополнительные файлы
