Экспериментальные исследования переноса ледяного шлама воздухом при бурении снежно-фирновой толщи

Обложка

Цитировать

Полный текст

Аннотация

В целях разработки технологии бурения снежно-фирновой толщи с обратной призабойной циркуляцией воздуха на станции Восток проведены экспериментальные исследования. Установлена динамика изменения характеристик ледяного шлама, таких как: фракционный состав, насыпная плотность, форма и скорость витания в зависимости от параметров снежно-фирнового горизонта, в том числе от распределения плотности массива по глубине.

Об авторах

С. А. Игнатьев

Санкт-Петербургский горный университет

Email: Vasilev_DA@pers.spmi.ru
Россия, Санкт-Петербург

Д. А. Васильев

Санкт-Петербургский горный университет

Автор, ответственный за переписку.
Email: Vasilev_DA@pers.spmi.ru
Россия, Санкт-Петербург

А. В. Большунов

Санкт-Петербургский горный университет

Email: Vasilev_DA@pers.spmi.ru
Россия, Санкт-Петербург

М. А. Васильева

Санкт-Петербургский горный университет

Email: Vasilev_DA@pers.spmi.ru
Россия, Санкт-Петербург

А. Ю. Ожигин

Санкт-Петербургский горный университет

Email: Vasilev_DA@pers.spmi.ru
Россия, Санкт-Петербург

Список литературы

  1. Beloglazov I.I., Sabinin D.S., Nikolaev M.Yu. Modeling the disintegration process in ball mills using the discrete element method. Gorny informacionno-analiticheskij byulleten. Mining informational and analytical bulletin. 2022, (6): 268–282 [In Russian]. https://doi.org/10.25018/0236_1493_2022_62_0_268
  2. Bolshunov A.V., Vasilev D.A., Ignatiev S.A., Dmitriev A.N., Vasilev N.I. Mechanical drilling of glaciers with bottom-hole scavenging with compressed air. Led i Sneg. Ice and Snow. 2022, 62 (1): 35–46 [In Russian]. https://doi.org/10.31857/S2076673422010114
  3. Veres A.N., Ekaykin A.A., Lipenkov V.Ya., Turkeev A.V., Hodzher T.V. First data on the climate variability in the vicinity of Vostok Station (Central Antarctica) over the past 2,000 years based on the study of a snow-firn core. Problemy Arktikii Antarktiki. Problems of Arctic and Antarctic. 2020, 66 (4): 482–500 [In Russian]. https://doi.org/0.30758/0555-2648-2020-66-4-482-500
  4. Ekaykin A.A., Teben’kova N.A., Lipenkov V.Y., Chihachev K.B., Veres A.N., Richter A. Underestimation of snow accumulation rate in Сentral Antarctica (Vostok station) derived from stake measurements. Meteorologiya i gidrologiya. Meteorology and hydrology. 2020, (4): 114–125 [In Russian].
  5. Kalesnik S.V. Ocherki glyaciologii. Essays on glaciology. Moscow: State publishing house of geographical literature. 1963: 436 p. [In Russian].
  6. Kudryashov B.B., Kirsanov A.I. Burenie razvedochnyh skvazhin s primeneniem vozduha. Drilling of exploratory wells using air. Moscow: Nedra, 1990: 263 p. [In Russian].
  7. Lipenkov V.Y. How air bubbles form in polar ice. Kriosfera Zemli. Earth’s Cryosphere. 2018, 22 (2): 6–28. doi: 10.21782/KZ1560-7496-2018-2(16-28). [In Russian].
  8. Lipenkov V.Y., Salamatin A.N. Steady-state size distribution of air bubbles in polar ice. Led i Sneg. Ice and Snow. 2014, 54 (4): 20–31 [In Russian]. https://doi.org/10.15356/2076-6734-2014-4-20-3.
  9. Savatyugin L.M., Arhipov S.M., Vasil’ev N.I., Vostrecov R.N., Fritcshe D., Miller H. Russian-German glaciological studies at Severnaya Zemlya and adjacent islands in 2000. Materialy Glyastiologicheskikh Issledovaniy. Date of Glaciological Studies. 2001, 91: 150–162 [In Russian].
  10. Shamshev F.A., Tarakanov S.N., Kudryashov B.B., Parijskij Yu.M., Yakovlev A.M. Tekhnologiya i tekhnika razvedochnogo bureniya. Exploration drilling technology and techniques. Textbook. 3rd ed., reprint and additional. M.: Nedra, 1983: 565 р. [In Russian].
  11. Shumskij P.A. Osnovy strukturnogo ledovedeniya. Fundamentals of structural glaciology. Moscow: Publishing house of the Academy of Sciences of the USSR, 1955: 492 p. [In Russian].
  12. Cao P., Zhao Q., Chen Z., Cao H., Chen B. Orthogonal experimental research on the structural parameters of a novel drill bit used for ice core drilling with air reverse circulation. Journ. of Glaciology. 2019, 65 (254): 1011–1022. https://doi.org/10.1017/jog.2019.76.
  13. Cao P., Liu M., Chen Z., Chen B., Zhao Q. Theory calculation and testing of air injection parameters in ice core drilling with air reverse circulation. Polar Science. 2018, 17: 23–32. https://doi.org/10.1016/j.polar.2018.06.005.
  14. Cuffey K.M., Paterson W.S.B. The Physics of Glaciers. Burlington: Academic Press. 2010 (4): 704.
  15. Fritzsche D., Wilhelms F., Savatyugin L., Pinglot J., Meyer H., Hubberten H., Miller H. A new deep ice core from Akademii Nauk ice cap, Severnaya Zemlya, Eurasian Arctic: First results. Annals of Glaciology. 2002, 35: 25–28. https://doi.org/10.3189/172756402781816645.
  16. Gendler S., Prokhorova E. Risk-Based Methodology for Determining Priority Directions for Improving Occupational Safety in the Mining Industry of the Arctic Zone. Resources. 2021, 10 (20). https://doi.org/10.3390/resources10030020.
  17. Gibson C., Boeckmann G., Meulemans Z., Kuhl T., Koehler J., Johnson J., Slawny K. RAM-2 Drill system development: An upgrade of the Rapid Air Movement Drill // Annals of Glaciology. 2020, 62 (84): 1–10. https://doi.org/10.1017/aog.2020.72.
  18. Hong J., Xiaopeng F., Yunchen L., Gang L., Bowen L., Talalay P. Size distribution and shape characteristics of ice cuttings produced by an electromechanical auger drill. Cold Regions Science and Technology. 2015, 119: 204–210. https://doi.org/10.1016/j.coldregions.2015.08.012.
  19. Hu Z., Talalay P., Zheng Z., Cao P., Shi, G., Li Y., Ma H. Air reverse circulation at the hole bottom in ice-core drilling. Journ. of Glaciology. 2019, 5 (249): 149–156. https://doi.org/10.1017/jog.2018.95.
  20. Islamov S.R., Bondarenko A.V., Mardashov D.V. A selection of emulsifiers for preparation of invert emulsion drilling fluids. Topical Issues of Rational Use of Natural Resources 2019. 2019: 487–494. https://doi.org/10.1201/9781003014638-2.
  21. Litvinenko V.S., Leitchenkov G.L., Vasiliev N.I. Anticipated sub-bottom geology of Lake Vostok and technological approaches considered for sampling. Chemie der Erde – Geochemistry. 2020, 80 (3): 125556 p. https://doi.org/10.1016/j.chemer.2019.125556.
  22. Shammazov I., Sidorkin D., Dzhemilev E. Research of the Dependence of the Pipeline Ends Displacement Value When Cutting Out Its Defective Section on the Elastic Stresses in the Pipe Body. IOP Conference Series: Earth and Environmental Science. 2022, (1): 22077–22077. https://doi.org/10.1088/1755-1315/988/2/022077.
  23. Sultanbekov R., Islamov S., Mardashov D., Beloglazov I., Hemmingsen T. Research of the Influence of Marine Residual Fuel Composition on Sedimentation Due to Incompatibility. Journ. of Marine Science and Engineering. 2021, 9 (10): 1067. https://doi.org/10.3390/jmse9101067.
  24. Wang R., Liu A., Sun Y., Cao P., Fan X., Talalay P. Ice drill testing facility. Cold Regions Science and Technology. 2017, 145: 151–159. https://doi.org/10.1016/j.coldregions.2018.10.017.
  25. Whelsky A.N., Albert M.R. Firn permeability impacts on pressure loss associated with rapid air movement drilling. Cold Regions Science and Technology. 2016, 123: 149–154. https://doi.org/10.1016/J.COLDREGIONS.2015.11.018

Дополнительные файлы



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.