Selective Extraction of Lithium Cations From Mixture of Alkali Metal Chlorides Using Electrobaromembrane Process
- Autores: Butylskii D.Y.1, Troitskiy V.A.1,2, Smirnova N.V.2, Pismenskaya N.D.1, Apel P.Y.3, Blonskaya I.V.3, Nikonenko V.V.1
-
Afiliações:
- Kuban State University
- Platov South-Russian State Polytechnic University (NPI)
- Joint Institute for Nuclear Research
- Edição: Volume 14, Nº 3 (2024)
- Páginas: 190-199
- Seção: Articles
- URL: https://journals.eco-vector.com/2218-1172/article/view/674226
- DOI: https://doi.org/10.31857/S2218117224030022
- EDN: https://elibrary.ru/MSIINL
- ID: 674226
Citar
Resumo
The problem of low-reagent separation of Na+, K+ and Li+ cations is becoming increasingly important in connection with the search for new technologies for the extraction of lithium from brines and the recovery of this valuable element from already used energy sources. This paper presents the results of testing the electrobaromembrane process, in which the gradients of the electric field and pressure field are directed in opposite directions. The experiments were carried out in a laboratory flow cell, the desalting and concentration chambers of which are separated by a track-etched membrane and limited by MA-41 anion-exchange membranes. The working area of each membrane is 30 cm2. The processed solution contains 70, 75 and 55 mmol/L LiCl, KCl and NaCl, respectively. It has been shown that at a current density of 11,7 mA/cm2 and a pressure difference of 0.20 bar in the desalting circuit, it is possible to ensure an accumulation rate of Li+ cations equal to 0,05 mol/(m2 h), and a rate of loss of Na+ and K+ cations from this circuit , equal to minus 0,09 and minus 0,25 mol/(m2h), respectively. Factors that can influence the efficiency of separation of Li+ and Na+, K+ are considered.
Palavras-chave
Sobre autores
D. Butylskii
Kuban State University
Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar
V. Troitskiy
Kuban State University; Platov South-Russian State Polytechnic University (NPI)
Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar; 132 Prosveschenia str., 346428 Novocherkassk
N. Smirnova
Platov South-Russian State Polytechnic University (NPI)
Email: v_nikonenko@mail.ru
Rússia, 132 Prosveschenia str., 346428 Novocherkassk
N. Pismenskaya
Kuban State University
Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar
P. Apel
Joint Institute for Nuclear Research
Email: v_nikonenko@mail.ru
Rússia, 6 Joliot-Curie St., 141980 Dubna
I. Blonskaya
Joint Institute for Nuclear Research
Email: v_nikonenko@mail.ru
Rússia, 6 Joliot-Curie St., 141980 Dubna
V. Nikonenko
Kuban State University
Autor responsável pela correspondência
Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar
Bibliografia
- Bradley D.C., Stillings L.L., Jaskula B.W., Munk L., McCauley A.D. Lithium, 1802K, Reston, VA, 2017.
- Zhang Y., Yu D., Jia C., Sun L., Tong A., Wang Y., Wang Y., Huang L., Tang J. // Desalination. 2023. V. 66. P. 116891.
- Рябцев А. Д., Коцупало Н. П., Вахромеев А. Г., Комин М. Ф. // Рациональное освоение недр. 2013. №. 1. С. 44–51.
- Gabra G.G., Torma A.E. // Hydrometallurgy. 1978. V. 3. №. 1. P. 23–33.
- Shi D., Zhang L., Peng X., Li L., Song F., Nie F., Ji L., Zhang Y. // Desalination. 2018. V. 441. P. 44–51.
- Besserguenev A.V., Fogg A.M., Francis R.J., Price S.J., Hare D. O’, Isupov V.P., Tolochko B.P. // Chem. Mater. 1997. V. 9. №. 1. P. 241–247.
- Chitrakar R., Kanoh H., Miyai Y., Ooi K. // ChemInform. 2001. V. 32. №. 4. P. 3151–3157.
- Guo Y., Yu J., Su H., Lin S. // Desalination. 2001. V. 571. №. 117113.
- Wang J., Yue X., Wang P., Yu T., Du X., Hao X., Abudula A., Guan G. // Renew. Sust. Energ. Rev. 2022. V. 154. №. 111813.
- Zhang Y., Xu R., Wang L., Sun W., Guan G. // Miner. Eng. 2022. V. 180. №. 107468.
- Lai X., Xiong P., Zhong H. // Miner. Eng. 2020. V. 192. №. 105252.
- Zhu R., Wang S., Srinivasakannan C., Li S., Yin S., Zhang L., Jiang X., Zhou G., Zhang N. // Environ. Chem. Lett. 2023. V. 21. №. 3. P. 1611–1626.
- Lide D.R., CRC Handbook of Chemistry and Physics 86TH Edition. 2005.
- Wei X., Gao W., Wang Y., Wu K., Xu T. // Sep. Purif. Technol. 2022. V. 280. №. 119909.
- Бутыльский Д. Ю., Письменская Н. Д., Никоненко В. В. // Успехи химии. 2023. Т. 92. С. 4. (англоязычная версия: Butylskii D.Y., Dammak L., Larchet C., Pismenskaya N.D., Nikonenko V.V. // Russ. Chem. Rev. 2023. V. 92. P. 5074.)
- Gao S.-L., Qin Z.-X., Wang B.-F., Huang J., Xu Z.-L., Tang Y.-J. // Desalination. 2024. V. 572. №. 117142.
- Ying J., Lin Y., Zhang Y., Yu J. // ACS ES and T Water. 2023. V. 3. №. 7. P. 1720–1739.
- Wang H., Zeng G., Yang Z., Chen X., Wang L., Xiang Y., Zeng X., Feng Z., Tang B., Yu X., Zeng Y. // Sep. Purif. Technol. 2024. V. 330. №. 125254.
- Figueira M., Rodríguez-Jiménez D., López J., Reig M., Cortina J. L., Valderrama C. // Desalination. 2023. V. 549. №. 1116321.
- Bazrgar Bajestani M., Moheb A., Dinari M. // Desalination. 2020. V. 486. №. 114476.
- Sharma P.P., Yadav V., Rajput A., Gupta H., Saravaia H., Kulshrestha V. // Desalination. 2020. V. 496. №. 114755.
- Ying J., Luo M., Jin Y., Yu J. // Desalination. 2020. V. 492. №. 1146215.
- Brewer A.K., Madorsky S.L., Westhaver J.W. // Science. 1946. V. 104. №. 2694. P. 156 –157.
- Forssell P., Kontturi K. // Sep. Purif. Technol. 1983. V. 18. №. 3. P. 205 – 214.
- Kontturi K., Pajari H. // Sep. Purif. Technol. 1986. V. 21. №. 10. P. 1089–1099.
- Tang C., Bondarenko M.P., Yaroshchuk A., Bruening M.L. // J. Memb. Sci. 2021. V. 638. № 119684.
- Butylskii D.Y., Pismenskaya N.D., Apel P.Y., Sabbatovskiy K.G., Nikonenko V.V. // J. Memb. Sci. 2021. V. 635. №. 119449.
- Butylskii D., Troitskiy V., Chuprynina D., Dammak L., Larchet C., Nikonenko V. // Membranes. 2021. V. 13. №. 5. Art. 509.
- Сарапулова В.В., Пасечная Е.Л., Титорова В.Д., Письменская Н.Д., Апель П.Ю., Никоненко В.В. // Мембраны и мембранные технологии. 2020. Т. 10. № 5. С. 350–370. (англоязычная версия: Sarapulova V. V., Pasechnaya E.L., Titorova V.D., Pismenskaya N.D., Apel P.Y., Nikonenko V. V. // Membr. Membr. Technol. 2020. V. 2. P. 332–350.)
- Kozhina E., Panov D., Kovalets N., Apel P., Bedin S. // Nanotechnology. 2023. V. 35. № 3. Art. 035601.
- Flerov G.N., Apel P.Y., Didyk A.Y., Kuznetsov V.I., Oganesyan R.T. // Soviet At. Energy. 1989. V. 67, P. 763–70.
- Apel P. Y. //Encyclopedia of membrane science and technology. 2013. P. 1–25.
- Monopolar membranes. http://www.azotom.ru/monopolyarnye-membrany/ (accessed September 26, 2023).
- Сарапулова В.В., Титорова В.Д., Никоненко В.В., Письменская Н.Д. // Мембраны и мембранные технологии. 2019. Т. 9. № 3. С. 198–213. (англоязычная версия: Sarapulova V.V., Titorova V.D., Nikonenko V.V., Pismenskaya N.D. // Membr. Membr. Technol. 2019. V. 1. № 3. P. 168–182.)
- Белей И., Кармацких С. А., Речапов Д. А., Цыпкин Е. Б., Коростелев А. С., Антоненко Д. В. // Строительство нефтяных и газовых скважин на суше и на море. 2018. №. 4. С. 23–30.
- Кислый, А. Г., Бутыльский, Д. Ю., Мареев, С. А., & Никоненко, В. В. // Мембраны и мембранные технологии. 2021. Т. 11. № 2. С. 146–154. (англоязычная версия: Kislyi A.G., Butylskii D.Y., Mareev S.A., Nikonenko V.V. // Membr. Membr. Technol. 2021. V. 3. № 2. P. 131–138.)
- Zhao Y., Xiang X., Wang M., Wang H., Li Y., Li J., Yang H. // Desalination. 2021. V. 512. №. 115126.
- Tang C., Yaroshchuk A., Bruening M. L. // Chem. Commun. 2020. V. 56. №. 74. P. 10954 –10957.
Arquivos suplementares
