Investigation of Low-Temperature Hydrogen Permeability of Surface Modified Pd–Cu Membranes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Pd60%Cu40% membranes were modified with nanostructured coatings to intensify low-temperature (25–100°C) hydrogen transport. Classical palladium black and filamentous particles were applied as surface modifiers by electrodeposition. The experiment results confirmed significant reducing of surface limitations by modifying layer application on both surfaces of the developed membranes of the Pd60%Cu40% alloy. The study of the developed membranes in the low-temperature hydrogen transport processes demonstrated high and stable flux up to 0.36 mmol s–1 m–2, as well as high hydrogen permeability up to 1.33 × 10–9 mol s–1 m–2 Pa–0.5. In numerical terms, the values of the membranes of the Pd60%Cu40% alloy modified with nanofilaments were up to 1.3 and 3.9 times higher compared to membranes modified with classical black and uncoated ones, respectively. The developed Pd60%Cu40% membranes also demonstrated a high level of H2/N2 selectivity – up to 3552. The strategy of surface modification of palladium-based membranes can shed new light on the development and manufacturing of high-performance and selective membranes for ultrapure hydrogen evolution devices.

作者简介

I. Petriev

Кuban state university; Federal Research Centre The Southern Scientific Centre of the Russian Academy of The Sciences

编辑信件的主要联系方式.
Email: petriev_iliya@mail.ru
Russia, 350040, Krasnodar; Russia, 344006, Rostov-on-Don

P. Pushankina

Кuban state university

Email: petriev_iliya@mail.ru
Russia, 350040, Krasnodar

G. Andreev

Кuban state university

Email: petriev_iliya@mail.ru
Russia, 350040, Krasnodar

参考

  1. Filippov S.P., Yaroslavtsev A.B. // Russ. Chem. Rev. 2021. V. 90. № 6. P. 627. https://doi.org/10.1070/RCR5014
  2. Apel P.Y., Velizarov S., Volkov A.V. et al. // Membr. Membr. Technol. 2022. V. 4. P. 69. https://doi.org/10.1134/S2517751622020032
  3. Mironova E.Y., Ermilova M.M., Orekhova N.V. et al. // Membr. Membr. Technol. 2019. V. 1. P. 246. https://doi.org/10.1134/S251775161904005X
  4. Stenina I., Yaroslavtsev A. // Processes. 2023. V. 11. № 56. https://doi.org/10.3390/pr11010056
  5. Petriev I.S., Lutsenko I.S., Pushankina P.D. et al. // Russ. Phys. J. 2022 V. 65. P. 312. https://doi.org/10.1007/s11182-022-02637-x
  6. Didenko L.P., Babak V.N., Sementsova L.A. et al. // Membr. Membr. Technol. 2023. V. 5. P. 69. https://doi.org/10.1134/S2517751623020038
  7. Gallucci F., Fernandez E., Corengia P. et al. // Chem. Eng. Sci. 2013. V. 92. P. 40. https://doi.org/10.1016/j.ces.2013.01.008
  8. Lytkina A.A., Orekhova N.V., Ermilova M.M. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 13310. https://doi.org/10.1016/j.ijhydene.2019.03.205
  9. Apel P.Y., Bobreshova O.V., Volkov A.V. et al. // Membr. Membr. Technol. 2019. V. 1. P. 45. https://doi.org/10.1134/S2517751619020021
  10. Lytkina A.A., Orekhova N.V., Ermilova M.M. et al. // Pet. Chem. 2017. V. 57. P. 1219. https://doi.org/10.1134/S0965544117130072
  11. Fedotov A.S., Tsodikov M.V., Yaroslavtsev A.B. // Processes. 2022. V. 10. № 2060. https://doi.org/10.3390/pr10102060
  12. El-Shafie M., Kambra S., Hayakawa Y. // S. Afr. J. Chem. Eng. 2021. V. 35. P. 118. https://doi.org/10.1016/j.sajce.2020.09.005
  13. Prikhno I.A., Safronova E.Y., Stenina I.A. et al. // Membr. Membr. Technol. 2020. V. 2. P. 265. https://doi.org/10.1134/S2517751620040095
  14. Petriev I., Pushankina P., Shostak N. et al. // Int. J. Mol. Sci. 2022. V. 23. № 228. https://doi.org/10.3390/ijms23010228
  15. Ryu S., Badakhsh A., Oh J.G. et al. // Membranes. 2023. V. 13. № 23. https://doi.org/10.3390/membranes13010023
  16. Fasolin S., Barison S., Agresti F. et al. // Membranes. 2022. V. 12. № 722. https://doi.org/10.3390/membranes12070722
  17. Yin Z., Yang Z., Du M. et al. // J. Membr. Sci. 2022. V. 654. № 120572. https://doi.org/10.1016/j.memsci.2022.120572
  18. Petriev I.S., Pushankina P.D., Lutsenko I.S. et al. // Doklady Physics. 2021. V. 66. P. 209. https://doi.org/10.1134/S1028335821080061
  19. Nam S.-E., Lee K.-H. // J. Membr. Sci. 2001. V. 192. P. 177. https://doi.org/10.1016/S0376-7388(01)00499-9
  20. Nam S.-E., Lee K.-H. // Ind. Eng. Chem. Res. 2005. V. 44. P. 100. https://doi.org/10.1021/ie040025x
  21. Islam M.S., Rahman M.M., Ilias S. // Int. J. Hydrog. Energy. 2012. V. 37. P. 3477. https://doi.org/10.1016/j.ijhydene.2011.11.024
  22. Kim D.-W., Park Y.J., Moon J.-W. // Thin Solid Films. 2008. V. 516. P. 3036. https://doi.org/10.1016/j.tsf.2007.11.126
  23. Bosko M.L., Fontana A.D., Tarditi A. et al. // Int. J. Hydrog. Energy. 2021. V. 46. P. 15572. https://doi.org/10.1016/j.ijhydene.2021.02.082
  24. Zhu K., Li X., Zhang Y. et al. // Int. J. Hydrog. Energy. 2022. V. 47. P. 6734. https://doi.org/10.1016/j.ijhydene.2021.12.021
  25. Alrashed F.S., Paglieri S.N., Alismail Z.S. et al. // Int. J. Hydrog. Energy. 2021. V. 46. P. 21939. https://doi.org/10.1016/j.ijhydene.2021.04.020
  26. Sazali N. // Int. J. Adv. Manuf. Technol. 2020. V. 107. P. 2465. https://doi.org/10.1007/s00170-020-05196-y
  27. Rahimpour M.R., Samimi F., Babapoor A. et al. // Chem. Eng. Process: Process Intensif. 2017. V. 121. P. 24. https://doi.org/10.1016/j.cep.2017.07.021
  28. Wei W., Liu L.C., Gong H.R. et al. // Comput. Mater. Sci. 2019, 159, 440–447. https://doi.org/10.1016/j.commatsci.2018.12.037
  29. Zhao C., Goldbach A., Xu H. // J. Membr. Sci. 2017. V. 542. P. 60. https://doi.org/10.1016/j.memsci.2017.07.049
  30. Ievlev V.M., Solntsev K.A., Vasiliev A.L. et al. // Processes. 2022. V. 10. № 2632. https://doi.org/10.3390/pr10122632
  31. Moon D.-K., Han Y.-J., Bang G. et al. // Korean J. Chem. Eng. 2019. V. 36. P. 563. https://doi.org/10.1007/s11814-019-0237-7
  32. Howard B.H., Killmeyer, R.P., Rothenberger K.S. et al. // J. Membr. Sci. 2004. V. 241. P. 207. https://doi.org/10.1016/j.memsci.2004.04.031
  33. Nayebossadri S., Speight J., Book D. // J. Membr. Sci. 2014. V. 451. P. 216. https://doi.org/10.1016/j.memsci.2013.10.002
  34. Martin M.H., Galipaud J., Tranchot A. et al. // Electrochim. Acta. 2013. V. 90. P. 615. https://doi.org/10.1016/j.electacta.2012.10.140
  35. Yuan L., Goldbach A., Xu H. // J. Phys. Chem. B. 2007. V. 111. № 37. P. 10952. https://doi.org/10.1021/jp073807n
  36. Gao M.C., Ouyang L., Doğan Ö.N. // J. Alloys Compd. 2013. V. 574. P. 368. https://doi.org/10.1016/j.jallcom.2013.05.126
  37. Yuan L., Goldbach A., Xu H. // J. Phys. Chem. B. 2008. V. 112. P. 12692. https://doi.org/10.1021/jp8049119
  38. Opalka S.M., Huang W., Wang D. et al. // J. Alloys Compd. 2007. V. 446–447. P. 583. https://doi.org/10.1016/j.jallcom.2007.01.130
  39. Shinoda Y., Takeuchi M., Dezawa N. et al. // Int. J. Hydrog. Energy. 2021. V. 46. P. 36291. https://doi.org/10.1016/j.ijhydene.2021.08.127
  40. Roa F., Block M.J., Way J.D. // Desalination. 2002. V. 147. P. 411. https://doi.org/10.1016/S0011-9164(02)00636-7
  41. Petriev I., Pushankina P., Bolotin S. et al. // J. Membr. Sci. 2021. V. 620. № 118894. https://doi.org/10.1016/j.memsci.2020.118894
  42. Kudashova D.S., Falina I.V., Kononenko N.A. et al. // Membr. Membr. Technol. 2023. V. 5. P. 18. https://doi.org/10.1134/S2517751623010043
  43. Yaroslavtsev A.B. // Solid State Ionics. 2005. V. 176. № 39–40. P. 2935–2940. https://doi.org/10.1016/j.ssi.2005.09.025
  44. Yaroslavtsev A.B., Stenina I.A., Golubenko D.V. // Pure and Applied Chemistry. 2020. V. 92. № 7. P. 1147–1157. https://doi.org/10.1515/pac-2019-1208
  45. Voropaeva E.Y., Stenina I.A., Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2008. V. 53. P. 1677. https://doi.org/10.1134/S0036023608110016
  46. Yaroslavtsev A.B., Stenina I.A., Voropaeva E.Yu. et al. // Polymers for Advanced Technologies. 2009. V. 20. № 6. P. 566–570. https://doi.org/10.1002/pat.1384
  47. Golubenko D.V., Karavanova Y.A., Melnikov S.S. et al. // J. Membr. Sci. 2018. V. 563. P. 777–784. https://doi.org/10.1016/j.memsci.2018.06.024
  48. Safronova E.Y., Stenina I.A., Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2010. V. 55. P. 13. https://doi.org/10.1134/S0036023610010031
  49. Vielstich W. Brennstoffelemente. Moderne Verfahren zur elektrochemischen Energlegewfnming, Verlag Chemie, Weinheim 1965.
  50. Petriev I., Pushankina P., Lutsenko I. et al. // Nanomaterials. 2020. V. 10. № 2081. https://doi.org/10.3390/nano10102081
  51. Petriev I., Pushankina P. Glazkova Y. et al. // Coatings. 2023. V. 13. P. 621. https://doi.org/10.3390/coatings13030621
  52. Basov A., Dzhimak S., Sokolov M. et al. // Nanomaterials. 2022. V. 12. № 1164. https://doi.org/10.3390/nano12071164
  53. Pushankina P., Baryshev M., Petriev I. // Nanomaterials. 2022. V. 12. № 4178. https://doi.org/10.3390/nano12234178
  54. Petriev I.S., Pushankina P.D., Lutsenko I.S. et al. // Tech. Phys. Lett. 2021. V. 47. P. 803. https://doi.org/10.1134/S1063785021080216
  55. Xiong Y., Ye W., Chen W. et al. // RSC Adv. 2017. V. 7. P. 5800. https://doi.org/10.1039/C6RA25900F
  56. Wang L., Zhai J.-J., Jiang K. et al. // Int. J. Hydrog. Energy. 2015. V. 40. P. 1726. https://doi.org/10.1016/j.ijhydene.2014.11.128
  57. Ward T.L., Dao T. // J. Membr. Sci. 1999. V. 153. P. 211. https://doi.org/10.1016/S0376-7388(98)00256-7
  58. Baychtok Y.K., Sokolinsky Y.A., Ayzenbud M.B. // J. Phys. Chem. 1976. V. 50. P. 1543.
  59. Pacheco Tanaka D.A., Llosa Tanco M.A., Okazaki J. et al. // J. Membr. Sci. 2008. V. 320. P. 436. https://doi.org/10.1016/j.memsci.2008.04.044
  60. Nomura M., Ono K., Gopalakrishnan S. et al. // J. Membr. Sci. 2005. V. 251. P. 151. https://doi.org/10.1016/j.memsci.2004.11.008
  61. Itoh N., Xu W.-C. // Appl. Catal. A: Gen. 1993. V. 107. P. 83. https://doi.org/10.1016/0926-860X(93)85117-8
  62. Okazaki J., Pacheco Tanaka D.A., Llosa Tanco M.A. et al. // J. Membr. Sci. 2006. V. 282. P. 370. https://doi.org/10.1016/j.memsci.2006.05.042
  63. Santucci A., Borgognoni F., Vadrucci M. et al. // J. Membr. Sci. 2013. V. 444. P. 378. https://doi.org/10.1016/j.memsci.2013.05.058
  64. Pan X., Kilgus M., Goldbach A. // Catal. Today. 2005. V. 104. P. 225. https://doi.org/10.1016/j.cattod.2005.03.049
  65. Zhao C., Goldbach A., Xu H. // J. Membr. Sci. 2017. V. 542. P. 60. https://doi.org/10.1016/j.memsci.2017.07.049

补充文件

附件文件
动作
1. JATS XML
2.

下载 (288KB)
3.

下载 (54KB)
4.

下载 (2MB)
5.

下载 (3MB)
6.

下载 (907KB)
7.

下载 (122KB)
8.

下载 (103KB)
9.

下载 (81KB)

版权所有 © И.С. Петриев, П.Д. Пушанкина, Г.А. Андреев, 2023