ASSOCIATION OF THE COLONIC MICROFLORA WITH THE OCCURRENCE OF COLORECTAL CANCER


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The human intestinal microflora comprises approximately 100 trillion microorganisms belonging to 36 000 species. It plays an important role in the maintenance of local and systemic homeostasis of a host macroorganism, by performing a number of vitally important functions. Impaired function of the intestinal microflora may increase the risk of developing a considerable number of diseases. The review considers the role of the intestinal microflora in the development of colorectal cancer. The analysis of the data available in the literature allows one to denote the basic groups of the mechanisms (metabolic, immune and intrinsic microbial) responsible for carcinogenesis associated with the activity of the representatives of the intestinal microflora, to identify potentially carcinogenic bacteria, and to propose theoretically and practically promising areas of the examined branch of science. The investigation of the impact of prebiotics, probiotics, and synbiotics on the risk of cancer and that of interactions between major cancer risk factors, intestinal microflora, and the probability of colorectal cancer are particularly urgent. Judging from the recent increasing trend in the number of cancer cases associated with biological carcinogens and due to continuous progress in molecular biology techniques, many associations of the representatives of the human body microflora with the risk of different types of malignancies will be discovered in the future.

Full Text

Restricted Access

About the authors

A. G KUTIKHIN

Kemerovo State Medical Academy, Ministry of Health and Social Development of Russia

Email: antonkutikhin@gmail.com

E. B BRUSINA

Kemerovo State Medical Academy, Ministry of Health and Social Development of Russia

Yu. A POPOVA

Kemerovo State Medical Academy, Ministry of Health and Social Development of Russia

A. E YUZHALIN

Kemerovo State University

A. S ZHIVOTOVSKY

Kemerovo State Medical Academy, Ministry of Health and Social Development of Russia

N. I BRIKO

I.M. Sechenov First Moscow State Medical University, Ministry of Health and Social Development of Russia

References

  1. Gill S.R., Pop M., Deboy R.T. et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312: 1355-1359.
  2. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65.
  3. Ley R.E., Hamady M., Lozupone C. et al. Evolution of mammals and their gut microbes. Science 2008; 320: 16471651.
  4. Tlaskalova-Hogenova H., Stepankova R., Kozakova H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011; 8: 110-120.
  5. Zoetendal E.G., Rajilic-Stojanovic M., de Vos W.M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008; 57: 1605-1615.
  6. Bäckhed F., Ley R.E., Sonnenburg J.L. et al. Host-bacterial mutualism in the human intestine. Science. 2005, 307: 19151920.
  7. Prakash S., Rodes L., Coussa-Charley M. et al. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 2011; 5: 71—86.
  8. Boyle P., Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann. Oncol. 2005; 16: 481—488.
  9. Zhang M.M., Cheng J.Q., Xia L. et al. Monitoring intestinal microbiota profile: a promising method for the ultraearly detection of colorectal cancer. Med. Hypotheses 2011; 76: 670 — 672.
  10. O’Keefe S.J., Ou J., Aufreiter S. et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J. Nutr. 2009; 139: 2044—2048.
  11. Bernstein H., Bernstein C., Payne C.M. et al. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 2005; 589: 47665.
  12. O’Keefe S.J. Nutrition and colonic health: the critical role of the microbiota. Curr. Opin. Gastroenterol. 2008; 24: 51—58.
  13. McBain A.J., Macfarlane G.T. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J. Med. Microbiol. 1998; 47: 407—416.
  14. Ramasamy S., Singh S., Taniere P. et al. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 2006; 291: G288—G296.
  15. Humblot C., Murkovic M., Rigottier-Gois L. et al. Beta-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in rats. Carcinogenesis. 2007; 28: 2419—2425.
  16. Kim D.H., Jin Y.H. Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch. Pharm. Res. 2001; 24: 564—567.
  17. Azcarate-Peril M.A., Sikes M., Bruno-Barcena J.M. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am. J. Physiol. Gastrointest. Liver Physiol. 2011; 301: G401—G424.
  18. Roldan M.D., Pérez-Reinado E., Castillo F. et al. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. 2008; 32: 474—500.
  19. Seitz H.K., Simanowski U.A., Garzon F.T. et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 1990; 98: 406—413.
  20. Markowitz V.M., Szeto E., Palaniappan K. et al. The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res. 2008; 36: D528— D 533.
  21. Huycke M.M., Gaskins H.R. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp. Biol. Med. 2004; 229: 586—597.
  22. Kumar A., Wu H., Collier-Hyams L.S. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 2007; 26: 4457—4466.
  23. Roessner A., Kuester D., Malfertheiner P. et al. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol. Res. Pract. 2008; 204: 511—524.
  24. Bäckhed F., Ding H., Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004, 101: 15718—15723.
  25. Saleh M., Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat. Rev. Immunol. 2011; 11: 9—20.
  26. Sansonetti P.J., Di Santo J.P. Debugging how bacteria manipulate the immune response. Immunity 2007; 26: 149—161.
  27. Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009; 9: 313—323.
  28. Gonzalez-Navajas J.M., Fine S., Law J. et al. TLR4 signaling in effector CD4+ T-cells regulates TCR activation and experimental colitis in mice. J. Clin. Invest. 2010; 120: 570—581.
  29. Salcedo R., Worschech A., Cardone M. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 2010; 207: 1625— 1636.
  30. Fukata M., Chen A., Vamadevan A.S. et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 2007; 133: 1869—1881.
  31. Chen G.Y., Shaw M.H., Redondo G. et al. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 2008; 68: 10060— 10067.
  32. Allen I.C., TeKippe E.M., Woodford R.M. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 2010; 207: 1045—1056.
  33. Normand S., Delanoye-Crespin A., Bressenot A. et al. Nodlike receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl. Acad. Sci. USA 2011; 108: 9601— 9606.
  34. Uronis J.M., Mühlbauer M., Herfarth H.H. et al. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 2009; 4: e6026.
  35. Moran J.P., Walter J., Tannock G.W. et al. Bifidobacterium animalis causes extensive duodenitis and mild colonic inflammation in monoassociated interleukin-10-deficient mice. Inflamm. Bowel Dis. 2009; 15: 1022—1031.
  36. McConnell B.B., Yang V.W. The role of inflammation in the pathogenesis of colorectal cancer. Curr. Colorectal. Cancer Rep. 2009; 5: 69—74.
  37. Candela M., Guidotti M., Fabbri A. et al. Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Crit. Rev. Microbiol. 2011, 37: 1—14.
  38. Sears C.L. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin. Microbiol. Rev. 2009; 22: 349—369.
  39. Nougayrède J.P., Homburg S., Taieb F. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313: 848—851.
  40. Lara-Tejero M., Galan J.E. Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol. 2002; 10: 147—152.
  41. Ge Z., Schauer D.B., Fox J.G. In vivo virulence properties of bacterial cytolethal-distending toxin. Cell. Microbiol. 2008; 10: 1599—1607.
  42. Samba-Louaka A., Nougayrède J.P., Watrin C. et al. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell. Microbiol. 2008; 10: 2496—2508.
  43. Boquet P. The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon. 2001, 39: 1673—1680.
  44. Travaglione S., Fabbri A., Fiorentini C. The Rho-activating CNF1 toxin from pathogenic E. coli: a risk factor for human cancer development? Infect. Agent Cancer 2008; 3: 4.
  45. Killeen S.D., Wang J.H., Andrews E.J. et al. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system. Brit. J. Cancer 2009; 100: 1589-1602.
  46. Moore W.E., Moore L.H. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 1995; 61: 3202-3207.
  47. Kado S., Uchida K., Funabashi H. et al. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res. 2001; 61: 2395-2398.
  48. Vannucci L., Stepankova R., Kozakova H. et al. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol. 2008; 32: 609-617.
  49. Wu S., Rhee K.J., Albesiano E. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009; 15: 1016-1022.
  50. Toprak N. U., Yagci A., Gulluoglu B.M. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 2006; 12: 782-786.
  51. Balamurugan R., Rajendiran E., George S. et al. Realtime polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J. Gastroenterol. Hepatol. 2008; 23: 1298-1303.
  52. Sobhani I., Tap J., Roudot-Thoraval F. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011; 6: e16393.
  53. Boleij A., Roelofs R., Schaeps R.M. et al. Increased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer 2010, 116: 4014-4022.
  54. Scanlan P.D., Shanahan F., Clune Y. et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ. Microbiol. 2008; 10: 789-798.
  55. Swidsinski A., Khilkin M., Kerjaschki D. et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 1998; 115: 281-286.
  56. Gueimonde M., Ouwehand A., Huhtinen H. et al. Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. Wld J. Gastroenterol. 2007; 13: 3985-3989.
  57. Shen X.J., Rawls J.F., Randall T. et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 2010; 1: 138-147.
  58. Wang T., Cai G., Qiu Y. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012; 6: 320-329.
  59. Marchesi J.R., Dutilh B.E., Hall N. et al. Towards the human colorectal cancer microbiome. PLoS One 2011; 6: e20447.
  60. Castellarin M., Warren R.L., Freeman J.D. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012; 22: 299-306.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies