FROM SAFE CARRIAGE TO PURULENT MENINGITIS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper considers the current views of the development of infection from mucosal colonization (carriage), including bacteremia, to acute purulent meningitis caused by the human commensal bacteria Neisseria meningitidis, Streptococcus pneumoniae, and Streptococcus agalactiae, etc. To reach the subarachnoid space, the pathogens of acute purulent meningitides use different virulence factors. Emphasis is laid on the role of bacterial capsules. Mucosal colonization manifests itself in microcolony and biof ilm formation. However, only a limited number of genotypes, the so-called hyperinvasive lineages, are able to cross the epithelial barrier and to enter the bloodstream. The epithelial barrier is overcome via transcellular (meningococcus) or transcellular and paracellular (pneumococcus, Serogroup B streptococcus) routes. The pathogens survive and multiply in the blood due to the capsules and complement-inactivating system. The blood-brain barrier is overcome mainly through the paracellular route although the role of transcytosis for meningococcus cannot be ruled out. Successfully overcoming both the epithelial barrier and the blood vessel endothelium requires the involvement of Type IV pili and other bacterial adhesins. The close interaction of the microorganism with the brain capillary endothelium gives rise to activated host cell signaling pathways, leading to the breakage of very strong bonds between the vascular wall cells. This underlines the need for mon itoring the clonal structure of circulating pathogens of acute purulent meningitides as an important element of epidemiological surveillance.

Full Text

Restricted Access

About the authors

N. N KOSTYUKOVA

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of Russia

Email: nathakos@mail.ru
Moscow

Vladimir A. BEKHALO

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of Russia

Email: bekhalo@gamaleya.org
Moscow

References

  1. Caugant D.A., Maiden M.C.J. Meningococcal carriage and disease — population biology and evolution. Vaccine 2009; 27 (Suppl 27): B64—B70.
  2. Nassif X., Pujol C., Morand P., Eugene E. Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol. Microbiol. 1999; 32(6): 1124— 1132.
  3. Hill D.G., Griffith N.J., Borodina E., Virji M. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clinical Science 2010; 118: 547—564.
  4. Coureuil M., Join-Lambert O., Lecuyer H. et al. Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 2012; 3(2): 164—172.
  5. Lappann M., Haagensen J. A., Claus H. et al. Meningococcal biofilm formation: structure, development and phenotypes in standardized continuous flow system. Mol. Microbiol. 2006; 62(5): 1292—1309.
  6. Ericksson J., Ericksson O.S., Jonsson A.-B. Loss of meningococcal PilU delays microcolony formation and attenuates virulence in vitro. Infect. Immun. 2012; 80(7): 2538—2547.
  7. Sim R.J., Harrison M.M., Moxon E.R., Tang C.M. Underestimation of meningococci in tonsillar tissue by nasopharyngeal swabbing. Lancet 2000, 356(9242): 1653—1654.
  8. Костюкова Н.Н., Бехало В.А. Менингококковое носительство: загадки и разгадки. Эпидемиол. инфекц. бол. 2010; 1: 30—34.
  9. Lappann M., Claus H., van Alen T. et al. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. Mol. Microbiol. 2010; 75(6): 1355—1371.
  10. Neil R.B., Shao J.Q., Apicella M.A. Biofilm formation on human airway epithelia by encapsulated Neisseria meningitidis serogroup B. Microbes and Infection 2009; 11(2): 281—287.
  11. Lappann M., Vogel U. Biofilm formation by human pathogen Neisseria meningitidis. Med. Microbiol. Immunol. 2010; 199: 173—183.
  12. Neil R.B., Apicella M.A. Clinical and laboratory evidence of Neisseria meningitidis biofilms. Future Microbiol. 2009; 4: 555—563.
  13. Stephens D.S. Biology and pathogenesis of the evolutionary successful, obligate human bacterium Neisseria meningitidis. Vaccine 2009; 27 (Suppl 2): B71— B77.
  14. Костюкова Н.Н., Бехало В.А. Бактерионосительство как форма персистенции менингококков. Журн. микробиол. 2009; 4: 8—12.
  15. YardanhanS.P., Kriz P., Tzanakaki G. Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece and Norway. J. Clin. Microbiol. 2004; 42(11): 5446—5453.
  16. Caugant D.A. Genetics and evolution of Neisseria meningitidis: importance for the epidemiology of meningococcal disease. Infect. Genet. Evol. 2008; (5): 558—565.
  17. Миронов К.О., Тагаченкова Т.А., Королева И.С., Платонов А.Е., Шипулин Г.А. Гететическая характеристика штаммов Neisseria meningitidis, виделенних от здорових носителей в очагах менингококковой инфекции. Журн. микробиол. 2011; 2: 22—29.
  18. Caugant D., Tzanakaki G., Kriz P. Lessons from meningococcal carriage. FEMS Microbiol. Rev. 2007; 31(1): 52—63.
  19. Virji M. Pathogenic Neisseriae: surface modulation, pathogenesis and infection control. Nature Reviews Microbiology 2009; 7: 274—286.
  20. Spinosa M.R., Progida C., Tala A. et al. The Neisseria meningitidis capsule is important for transcellular survival in human cells. Infect. Immun. 2007; 75(7): 3594—3603.
  21. Southerland T.C., Quattroni P., Exley R.M., Tang Ch.M. Transcellular passage of Neisseria meningitidis across a polarized respiratory epithelium. Infect. Immun. 2010; 78(9): 3832—3847.
  22. Brandtzaeg P., Kierulf P., Gaustad P. et al. Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J. Infect. Dis. 1989; 159(2): 195—204.
  23. Madico G., Welsch J.A., Lewis L.A. et al. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J. Immunol. 2006; 177(1): 501—510.
  24. Join-Lambert O., Morand P.C., Carbonelle E. et al. Mechanisms of meningeal invasion by bacterial extracellular pathogen, the example of Neisseria meningitidis. Prog. Neuribiol. 2010; 91(2): 130—139.
  25. Sjolinder H., Jonsson A.-B. Olfactory nerve — a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One, 2010; 5(11): e14034.
  26. Mori J., Nishiyama Y., Yokoshi T., Kimuri Y. Olfactory transmission of neurotropic viruses. J. Neurovirol. 2005; 11: 129—137.
  27. Mairey E., Genevesio A., Donnadieu E. et al. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood-brain barrier. J. Exp. Med. 2006; 203(8): 1939—1950.
  28. Mikaty G., Soyer M., Mairey E. et al. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathogens 2009; 5(8): 1—14.
  29. Lecuyer H., NassifX., Coureuil M. Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells. Infect. Immun. 2012; 80(1): 175—181.
  30. Nassif X., Bourdoulous S., Eugene E., Courand P.O. How do extracellular pathogens cross the blood-brain barrier? Trends Microbiol. 2002; 10(5): 227—232.
  31. Nelson A.L., Ries J., Bagnoli F. et al. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 2007; 66(2): 329—340.
  32. Mook-Kanamori B.B., Geldhoff M., van der Poll T., van de Beek D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin. Microbiol. Rev. 2011; 24(3): 557—591.
  33. Kostyukova N.N., Volkova V.O., Ivanova V.V., Kvetnaya A.S. A study of pathogenic factors of Streptococcus pneumoniae strains causing meningitis. FEMS Immunol., Med. Microbiol. 1995; 10(2): 133—137.
  34. Soriano M., Santi Y.,Taddei A. et al. Group B Streptococcus crosses human epithelial cells by a paracellular route. J. Infect. Dis. 2006; 193(2): 241—250.
  35. Banerjee A., Kim B.J., Carmona E.M. et al. Bacterial pili exploit integrin machinery to promote immune activation and efficient blood-barrier penetration. Nature Communications 2011; 2(462): 1—11.
  36. Flugge K., Wons J., Spellerberg B. et al. Genetic differences between invasive and noninvasive neonatal group B streptococcal isolates. Pediatr. Infect. Dis. J. 2011; 30(12): 1037—1042.
  37. Maiden M.C.J., Frosch M. Can we, should we eradicate the meningococcus? Vaccine 2012; 30(6): B62—B66.
  38. Maiden M.C.J., Ibarz-Pavon A.B., Urvin R. et al. Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J. Infect. Dis. 2008; 197(5): 737—743.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies