Diagnosis and correction of hemostasis disorders in the postcovid period

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. Optimization of diagnosis and treatment of hemostasis disorders in the post-COVID period.

Materials and methods. The study included 100 patients aged 50.5 ± 0.84 years discharged from a COVID hospital 9 months ago. The state of the hemostatic system was assessed after 6 and 9 months after discharge using coagulogram and thrombodynamics test. Depending on the results of the thrombodynamics test in the post-COVID period, patients were divided into 3 groups (A, B, C). Patients in group A (n = 35), with severe hypercoagulation, received rivaroxaban 10 mg per day or apixaban 5 mg per day, patients in group B (n = 45) with moderate hypercoagulation – sulodexide 250 LU 2 times a day, patients of group C (n = 20), with minor changes in hemostasis, did not receive medications. The control group, examined at outpatient settings, included 20 apparently healthy individuals who had not had coronavirus infection (clinically and serologically) and had not been vaccinated against COVID-19. Statistical analysis of the results was carried out in the Statistica version 10 program (StatSoft Inc., USA), using multivariate ANOVA, Kruskal–Wallis test and Spearman correlation analysis.

Results. A hypercoagulable state in the post-COVID period was recorded in 86% of patients. After 3 months in group A, the number of patients with severe hypercoagulation decreased by 2.08 times (from 73 to 35%). Sulodexide was effective in situations with moderate hypercoagulation; in group B, after taking the drug, normocoagulation was observed in 16% of cases.

Conclusion. The data obtained indicate a long-term (more than 9 months) and persistent impairment of hemostasis in the post-COVID period and allows to determine tactics for diagnosing and correcting the prothrombotic state.

Full Text

Restricted Access

About the authors

Ivan I. Chuprov

Kuban State Medical University, Ministry of Health of Russia

Author for correspondence.
Email: chupanya95@mail.ru
ORCID iD: 0000-0001-6164-9995

Full-Time Postgraduate Student, Department of Infectious Diseases and Epidemiology

Russian Federation, Krasnodar

Vladimir N. Gorodin

Kuban State Medical University, Ministry of Health of Russia

Email: vgorodin@mail.ru
ORCID iD: 0000-0003-3062-7595

MD, Pofessor, Head, Department of Infectious Diseases and Epidemiology

Russian Federation, Krasnodar

Diana L. Moysova

Kuban State Medical University, Ministry of Health of Russia

Email: moisova.di@yandex.ru
ORCID iD: 0000-0003-3920-5997

MD, Associated Professor, Department of Infectious Diseases and Epidemiology

Russian Federation, Krasnodar

References

  1. ВОЗ. Клиническое ведение случаев COVID-19. Вариативные рекомендации 25 января 2021 год. https://apps.who.int/iris/ bitstream/handle/10665/338882/WHO-2019-nCoV-clinical-2021.1-rus.pdf
  2. [World Health Organization. COVID-19 Clinical management: living guidance 25 January 2021]. (In Russ.). https://apps.who.int/iris/bitstream/ handle/10665/338882/WHO-2019-nCoV-clinical-2021.1-eng.pdf
  3. Giannis D., Allen S.L., Tsang J., Flint S., Pinhasov T., Williams S. et al. Postdischarge thromboembolic outcomes and mortality of hospitalized patients with COVID-19: the CORE-19 registry. Blood 2021; 137(20): 2838–47. doi: 10.1182/blood.2020010529
  4. Kaseda E.T., Levine A.J. Post-traumatic stress disorder: A differential diagnostic consideration for COVID-19 survivors. Clin. Neuropsychol. 2020; 34(7–8): 1498–1514. doi: 10.1080/13854046.2020.1811894
  5. Huang L., Li X., Gu X., Zhang H., Ren L., Guo L. et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir. Med. 2022; 10(9): 863–76. doi: 10.1016/S2213-2600(22)00126-6
  6. Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond). 2021; 53(10): 737–54. doi: 10.1080/23744235.2021.1924397
  7. Von Meijenfeldt F.A., Havervall S., Adelmeijer J.., Lundström A., Magnusson M. et. al. Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Adv. 2021; 5(3): 756–9. doi: 10.1182/bloodadvances.2020003968
  8. Görlinger K., Levy J.H. COVID-19-associated Coagulopathy. Anesthesiology 2021; 134(3): 366–9. doi: 10.1097/ALN.0000000000003688
  9. Patell R., Bogue T., Koshy A., Bindal P., Merrill M., Aird W.C. et. al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020; 136(11): 1342–6. doi: 10.1182/blood.2020007938
  10. Iba T., Warkentin T.E., Thachil J., Levi M., Levy J.H. Proposal of the Definition for COVID-19-Associated Coagulopathy. J. Clin. Med. 2021; 10(2): 191. doi: 10.3390/jcm10020191
  11. Канорский С.Г. Постковидный синдром: распространенность и патогенез органных поражений, направления коррекции. Систематический обзор. Кубанский научный медицинский вестник 2021; 28(6): 90–116. https://doi.org/10.25207/1608-6228-2021-28-6-90-116.
  12. Kanorsky S.G. [Post-COVID syndrome: prevalence, organ pathogenesis and routes of correction. A systematic review]. Kuban Scientific Medical Bulletin 2021; 28(6): 90–116. (In Russ.). https://doi.org/10.25207/1608-6228-2021-28-6-90-116
  13. Heesakkers H., van der Hoeven J.G., Corsten S., Janssen I., Ewalds E., Simons K.S. et. al. Clinical Outcomes Among Patients With 1-Year Survival Following Intensive Care Unit Treatment for COVID-19. JAMA 2022; 327(6): 559–65. doi: 10.1001/jama.2022.0040
  14. Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O. et. al. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One 2014; 9(1): e87692. doi: 10.1371/journal.pone.0087692
  15. Mansory E.M., Abu-Farhaneh M., Iansavitchene A., Lazo-Langner A. Venous and Arterial Thrombosis in Ambulatory and Discharged COVID-19 Patients: A Systematic Review and Meta-analysis. TH Open. 2022; 6(3): e276–e282. doi: 10.1055/a-1913-4377
  16. Pretorius E., Vlok M., Venter C., Bezuidenhout J.A., Laubscher G.J., Steenkamp J. et. al. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc/ Diabetol. 2021; 20(1): 172. doi: 10.1186/s12933-021-01359-7
  17. Kell D.B., Laubscher G.J., Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem. J. 2022; 479(4): 537–59. doi: 10.1042/BCJ20220016
  18. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. Версия 17. https://static-0.minzdrav.gov.ru/system/attachments/attaches/ 000/061/254/original/%D0%92%D0%9C%D0%A0_COVID-19_V17.pdf? 1671088207
  19. Prevention, Diagnosis, and Treatment of Novel Coronavirus Infection (COVID-19). Interim Guidelines. Version 17]. (In Russ.). https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/254/original/%D0%92% D0%9C%D0%A0_COVID-19_V17.pdf? 1671088207

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of patient complains 6 months after discharge from the COVID hospital

Download (137KB)
3. Fig. 2. Simple linear correlation between TD and biochemical coagulogram parameters а - INR and D; b - fibrinogen and D; с - АРТТ and V; d - D-dimer and V.

Download (273KB)
4. Fig. 3. Comparative analysis of TD parameters in patients а - V (DOAC); b - Tsp (DOAC); с - Vi (DOAC); d - V (sulodexide); е - CS (sulodexide); f - Tsp (sulodexide); g - V (without therapy); h - Tsp (without therapy); i - Tlag (without therapy).

Download (317KB)

Copyright (c) 2024 Bionika Media