The use of integrative indicators based on laboratory data to assess the efficiency of the current epidemiological surveillance system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. Evaluation of the prospects for using integrative indicators based on laboratory data to analyze the completeness and objectivity of morbidity data, as well as comparative and operational assessment of the effectiveness of the epidemiological surveillance system for the new coronavirus infection (COVID-19).

Materials and methods. The calculation and analysis of integrative indicators was carried out based on the results of PCR studies for the presence of SARS-CoV-2 RNA according to the SOLAR (System of Laboratory Aggregation Result) platform and information on the incidence of COVID-19 in the constituent entities of the Russian Federation for the period 2022–2023.

Results. It is shown that the results of PCR studies can be used to assess the dynamics of the epidemic process. Methods for assessing the completeness and objectivity of morbidity data in the constituent entities of the Russian Federation using integrative indicators are proposed. The use of integrative indicators to identify regional characteristics in the diagnosis and recording of COVID-19 cases is substantiated.

Conclusion. Integrative indicators based on morbidity data and laboratory data can be successfully used as criteria for assessing the completeness and objectivity of information in epidemiological analysis. They can also serve as a basis for comparative and operational assessment of the effectiveness of the epidemiological surveillance system.

全文:

受限制的访问

作者简介

Dmitriy Dubodelov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

编辑信件的主要联系方式.
Email: dubodelov@cmd.su
ORCID iD: 0000-0003-3093-5731

Сand. Med. Sci., Senior Researcher, Laboratory of Viral Hepatitis

俄罗斯联邦, Moscow

Vasily Akimkin

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: crie@pcr.su
ORCID iD: 0000-0003-4228-9044

Professor, Academician of the Russian Academy of Sciences, MD, Director

俄罗斯联邦, Moscow

Tatiana Semenenko

N.F. Gamaleya National Research Center for Epidemiology and Microbiology

Email: semenenko@gamaleya.org
ORCID iD: 0000-0002-6686-9011

Professor, MD, Head, Epidemiology Department; Рrofessor, Department of Infectology and Virology, Institute of Professional Education

俄罗斯联邦, Moscow

Anna Esman

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: esman@cmd.su
ORCID iD: 0000-0002-5456-7649

Researcher, Laboratory of Molecular Methods for Studying of Genetic Polymorphisms

俄罗斯联邦, Moscow

Stanislav Kuzin

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: kuzin@cmd.su
ORCID iD: 0000-0002-0616-9777

Professor, MD, Head, Laboratory of Viral Hepatitis

俄罗斯联邦, Moscow

Svetlana Ugleva

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: ugleva@cmd.su
ORCID iD: 0000-0002-1322-0155

MD, Associate Professor, Head, Scientific and Analytical Department

俄罗斯联邦, Moscow

Evgeniy Voronin

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: voronin@cmd.su
ORCID iD: 0000-0001-5925-7757

Cand. Med. Sci., Head, Scientific Group of Mathematical Methods and Epidemiological Forecasting

俄罗斯联邦, Moscow

Andrey Gerasimov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: gerasimov.a@cmd.su
ORCID iD: 0000-0003-4549-7172

Professor, Cand. Phys. and Math. Sci, Lead Researcher, Scientific Group of Mathematical Methods and Epidemiological Forecasting

俄罗斯联邦, Moscow

Anna Cherkashina

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: cherkashina@pcr.ms
ORCID iD: 0000-0001-7970-7495

Cand. Chem. Sci., Director, Scientific Group of Genetic Engineering and Biotechnology

俄罗斯联邦, Moscow

Kamil Khafizov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: khafizov@cmd.su
ORCID iD: 0000-0001-5524-0296

Cand. Biol. Sci., Head, Laboratory of Genomic Studies

俄罗斯联邦, Moscow

Natalia Sycheva

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: sycheva.n@cmd.su
ORCID iD: 0000-0001-8557-6540

Junior Researcher, Laboratory of Infections Associated with the Provision of Medical Care

俄罗斯联邦, Moscow

Marina Korabelnikova

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: korabelnikova@cmd.su
ORCID iD: 0000-0002-2575-8569

Researcher, Laboratory of Viral Hepatitis

俄罗斯联邦, Moscow

Angelina Monakhova

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: monaxova.angelina@mail.ru
ORCID iD: 0009-0000-9950-2649

Postgraduate Student

俄罗斯联邦, Moscow

Roman Beregovykh

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: beregovykh@cmd.su
ORCID iD: 0009-0000-3956-2148

Specialist in Data Analysis and Processing

俄罗斯联邦, Moscow

参考

  1. Попова А.Ю., Ежлова Е.Б., Смоленский В.Ю., Брагина И.В., Орлов М.Ю., Демина Ю.В. и др. COVID-19: научно-практические аспекты борьбы с пандемией в Российской Федерации. Саратов: ООО «Амирит», 2021. 608 с./Popova A.Yu., Ezhlova E.B., Smolenskij V.Yu., Bragina I.V., Orlov M.Yu., Demina Yu.V. et al. [COVID–19: scientific and practical aspects of combating the pandemic in the Russian Federation]. Saratov: Amirit, 2021. 608 p. (In Russ.).
  2. Акимкин В.Г., Семененко Т.А., Хафизов К.Ф., Углева С.В., Дубоделов Д.В., Колосовская Е.Н. Стратегия геномного эпидемиологического надзора. Проблемы и перспективы. Журнал микробиологии, эпидемиологии и иммунобиологии 2024; 101(2): 163–172. doi: 10.36233/0372-9311-507/Akimkin V.G., Semenenko T.A., Khafizov K.F., Ugleva S.V., Dubodelov D.V., Kolosovskaia E.N. [Genomic surveillance strategy. Problems and perspectives]. Journal of Microbiology, Epidemiology and Immunobiology 2024; 101(2): 163–172. (In Russ.). doi: 10.36233/0372-9311-507
  3. Акимкин В.Г., Семененко Т.А., Углева С.В., Дубоделов Д.В., Кузин С.Н., Яцышина С.Б. и др. COVID-19 в России: эпидемиология и молекулярно-генетический мониторинг. Вестник РАМН 2022; 77(4): 254–260. doi: 10.15690/vramn2121/Akimkin V.G., Semenenko T.A., Ugleva S.V., Dubodelov D.V., Kuzin S.N., Iatsyshina S.B. et al. [COVID-19 in Russia: epidemiology and molecular genetic monitoring]. Annals of the Russian Academy of Medical Sciences 2022; 77(4): 254–260. (In Russ.). doi: 10.15690/vramn2121
  4. Черкасский Б.Л. Теоретическое обоснование структуры эпидемиологического надзора. В кн.: Сб. науч. тр. «Эпидемиологический надзор за инфекционными болезнями». М. 1987: 16–22./Cherkasskу B.L. [Theoretical substantiation of the structure of epidemiological surveillance]. In: Epidemiological surveillance of infectious diseases. Moscow. 1987: 16–22. (In Russ.).
  5. Акимкин В.Г., Попова А.Ю., Плоскирева А.А., Углева С.В., Семененко Т.А., Пшеничная Н.Ю. и др. COVID-19: эволюция пандемии в России. Сообщение I: проявления эпидемического процесса COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии 2022; 99(3): 269–286. doi: 10.36233/0372-9311-276/ Akimkin V.G., Popova A.Y., Ploskireva A.A., Ugleva S.V., Semenenko T.A., Pshenichnaia N.Yu. et al. [COVID-19: the evolution of the pandemic in Russia. Report I: manifestations of the COVID-19 epidemic process]. Journal of Microbiology, Epidemiology and Immunobiology 2022; 99(3): 269–286. (In Russ.). doi: 10.36233/0372-9311-276
  6. Болотовский В.Н., Зарицкий А.М., Зуев В.А., Кашкин К.П., Кондрусев А.И., Ковалева Е.П. и др. Эпидемиологический анализ. В кн.: Покровский В.И., ред. Руководство по эпидемиологии инфекционных болезней [в 2 т.]. T.1. М.: Медицина, 1993. 464 с./ Bolotovskii V.N., Zaritskii A.M., Zuev V.A., Kashkin K.P., Kondrusev A.I., Kovaleva E.P. et al. [Epidemiological analysis]. In: Pokrovskу V.I. еd. Handbook of Epidemiology of infectious diseases [in 2 volumes]. Vol. 1. Moscow: Medicine, 1993. 464 p. (In Russ.).
  7. Акимкин В.Г., Хафизов К.Ф., Дубоделов Д.В., Воронин Е.М., Черкашина А.С., Углева С.В. и др. Молекулярно-генетический мониторинг и технологии цифровой трансформации в современной эпидемиологии. Вестник РАМН 2023; 78(4): 363–369. doi: 10.15690/vramn13672/ Akimkin V.G., Khafizov K.F., Dubodelov D.V., Voronin E.M., Cherkashina A.S., Ugleva S.V. et. al. [Molecular genetic monitoring and digital transformation technologies in modern epidemiology]. Annals of the Russian Academy of Medical Sciences 2023; 78(4): 363–369. (In Russ.). doi: 10.15690/vramn13672
  8. Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D. et. al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020; (17): 261–272. doi: 10.1038/s41592-019-0686-2
  9. The pandas development team. 2024. pandas-dev/pandas: Pandas (v2.2.2). Zenodo. doi: 10.5281/zenodo.10957263
  10. Seabold S., Perktold J. Statsmodels: Econometric and statistical modeling with python. 2010. Conference: Python in Science Conference. doi: 10.25080/Majora-92bf1922-011
  11. Профилактика инфекционных болезней. Эпидемиология и профилактика COVID-19: Методические рекомендации МР 3.1.0170-20. М.: Роспотребнадзор, 2020. [Prevention of infectious diseases. Epidemiology and prevention of COVID-19. Methodological recommendations of MP 3.1.0170-20]. Moscow, 2020. (In Russ.).
  12. Mei Q., Li J., Du R., Yuan X., Li M., Li J. Assessment of patients who tested positive for COVID-19 after recovery. Lancet Infect. Dis. 2020; 20(9): 1004–1005. doi: 10.1016/S1473-3099(20)30433-3
  13. Calba C., Goutard F.L., Hoinville L., Hendrikx P., Lindberg A., Saegerman C. et al. Surveillance systems evaluation: a systematic review of the existing approaches. BMC Public Health 2015; 15(448): 1–13. doi: 10.1186/s12889-015-1791-5
  14. Hendrikx P., Gay E., Chazel M., Moutou F., Danan C., Richomme C. et al. OASIS: an assessment tool of epidemiological surveillance systems in animal health and food safety. Epidemiol. Infect. 2011; 139(10): 1486–1496. doi: 10.1017/S0950268811000161
  15. Добролюбова Е.И., Южаков В.Н. Комплексная оценка результативности и эффективности санитарно-эпидемиологического надзора. Социум и власть 2020; 6(86): 40–54. doi: 10.22394/1996-0522-2020-6-40-54/Dobrolyubova E.I., Yuzhakov V.N. [Comprehensive assessment of the effectiveness and efficiency of sanitary and epidemiological surveillance]. Society and Рower 2020; 6(86): 40–54. (In Russ.). doi: 10.22394/1996-0522-2020-6-40-54
  16. Declich S., Carter A.O. Public health surveillance: historical origins, methods and evaluation. Bull. World Health Organ 1994; 72(2): 285–304.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of intensive incidence rates and IP1 values among the constituent entities of the Russian Federation in 2022-2023

下载 (83KB)
3. Fig. 2. Distribution of subjects by IP2 value in 2022-2023

下载 (22KB)
4. Fig. 3. Dynamics of incidence rates and IP2 value in Moscow in 2022-2023

下载 (38KB)

版权所有 © Bionika Media, 2025