COVID-19 AS A PROBABLE TRIGGER FACTOR FOR AUTOIMMUNE DISEASES IN CHILDREN


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The emergence of SARS- CoV-2 led to the largest pandemic in modern history with a huge number of severe infection cases and deaths. With general bad statistics, the COVID-19 situation looked relatively safe in pediatric practice. It was characterized by a large proportion of patients with asymptomatic and mild infections, by significantly lower rates of morbidity and even more mortality. But this «imaginary» well-being was soon replaced by a disturbing trend. In clinical practice, children came under recording to have forms of delayed multiple organ inf lammatory damage, the so-called multisystem inflammatory syndrome in children (MIS- C). In addition to MIS- C, the role of COVID-19 as a kind of trigger in the development of various autoimmune diseases is not ruled out. Long-term follow-up of pediatric patients who have experienced COVID-19 is currently virtually absent due to objective reasons. The paper describes clinical cases of the development of autoimmune diseases in children after suffering from COVID-19. It discusses the role of infection caused by SARS- CoV-2 as a trigger for the development of autoimmune diseases.

Full Text

Restricted Access

About the authors

Gleb S. KARPOVICH

Novosibirsk State Medical University, Ministry of Health of Russia; Children's City Hospital Three

Email: karpovich.gleb@yandex.ru
Assistant Lecturer, Department of Infectious Diseases, Novosibirsk State Medical University; Infectiologist, Children’s City Hospital Three Novosibirsk, Russia

Irina V. KUIMOVA

Novosibirsk State Medical University, Ministry of Health of Russia

Email: kuimova_ira@mail.ru
MD; Associate Professor; Professor, Department of Infectious Diseases Novosibirsk, Russia

Yulia S. SEROVA

Children's City Hospital Three

Email: dgkb3@nso.ru
Infectiologist Novosibirsk, Russia

References

  1. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World Health Organization, 2019. https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
  2. WHO Director- General’s opening remarks at the media briefing on COVID-19 -11 March 2020. World Health Organization, 2019. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.
  3. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). ArcGIS. Johns Hopkins University, 2020. https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.
  4. Livingston E., Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA 2020; 323(14): 1335. doi: 10.1001/jama.2020.4344
  5. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases COVID-19-China. CCDC Weekly 2020; (2): 1-10. http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8-db1a8f51
  6. Tezer H., Bedir Demirdag T. Novel coronavirus disease (COVID-19) in children. Turk. J. Med. Sci. 2020; 50(SI-1): 592-603. doi: 10.3906/sag-2004-174
  7. Yasuhara J., Kuno T., Takagi H., Sumitomo N. Clinical characteristics of COVID-19 in children: A systematic review. Pediatr. Pulmonol. 2020 ; 55(10): 2565-75. doi: 10.1002/ ppul.24991
  8. Горелов А.В., Николаева С.В., Акимкин В.Г. Новая коронавирусная инфекция COVID-19: особенности течения у детей в Российской Федерации. Педиатрия. Журнал им. Г.Н. Сперанского 2020; 99 (6): 57-62. doi: 10.24110/0031-403X-2020-99-6-57-62
  9. Краснова Е.И., Карпович Г.С., Комиссарова Т.В., Извекова И.Я., Михайленко М.А., Серова Ю.С., Шестаков А.Е. Особенности течения COVID-19 у детей различных возрастных групп. Педиатрия. Журнал им. Г.Н. Сперанского 2020; 99(6): 141-7. doi: 10.24110/0031-403X-2020-99-6-141-147
  10. Radia T., Williams N., Agrawal P., Harman K., Weale J., Cook J., Gupta A. Multi-system inflammatory syndrome in children & adolescents (MIS-C): A systematic review of clinical features and presentation. Paediatr. Respir. Rev. 2021; 38(35): 51-7. doi: 10.1016/j.prrv.2020.08.001
  11. Nakra N.A., Blumberg D.A., Herrera-Guerra A., Lakshminrusimha S. Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management. Children (Basel) 2020; 7 (7): 69. doi: 10.3390/children7070069
  12. Fujimaru T., Ito S., Masuda H., Oana S., Kamei K., Ishiguro A., Kato H., Abe J. Decreased levels of inflammatory cytokines in immunoglobulin-resistant Kawasaki disease after plasma exchange. Cytokine 2014; 70 (2): 156-60. doi: 10.1016/j. cyto.2014.07.003
  13. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N. et al.Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host. Microbe 2020; 27(6): 992-1000. e3. doi: 10.1016/j.chom.2020.04.009
  14. Galeotti C., Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol. 2020; 16 (8): 413-14. doi: 10.1038/s41584-020-0448-7
  15. Askanase A.D., Khalili L., Buyon J.P. Thoughts on COVID-19 and autoimmune diseases. Lupus Sci Med. 2020; 7 (1): e000396. doi: 10.1136/lupus-2020-000396
  16. Canas C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med. Hypotheses 2020; 145: 110345. doi: 10.1016/j.mehy.2020.110345
  17. Liu Y., Sawalha A.H., Lu Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol. 2020; Publish Ahead of Print. doi: 10.1097/BOR.0000000000000776
  18. Lazarian G., Quinquenel A., Bellal M., Siavellis J., Jacquy C., Re D. et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br. J. Haematol. 2020; 190 (1): 29-31. doi: 10.1111/bjh.16794
  19. Zulfiqar A.-A., Lorenzo-Villalba N., Hassler P., Andrès E. Immune thrombocytopenic purpura in a patient with COVID-19. N. Engl. J. Med. 2020; 382: e43. doi: 10.1056/NEJMc2010472
  20. Dalakas M.C. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol. Neuroimmunol. Neuroinflamm. 2020; 7 (5): e781. doi: 10.1212/ NXI.0000000000000781
  21. Rojas M., Restrepo-Jiménez P., Monsalve D.M., Pacheco Y., Acosta-Ampudia Y., Ramirez-Santana C. et al. Molecular mimicry and autoimmunity. J. Autoimmun. 2018; 95: 100-23. doi: 10.1016/j.jaut.2018.10.012
  22. Pacheco Y., Acosta-Ampudia Y., Monsalve D.M., Chang C., Gershwin J.-M. Anaya Bystander activation and autoimmunity. J. Autoimmun. 2019: 103. 102301. doi: 10.1016/j.jaut.2019.06.012
  23. Lucchese G., Flöel A. Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmun. Rev. 2020; 19 (7): 102556. doi: 10.1016/j.autrev.2020.102556
  24. Kanduc D., Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin. Immunol. 2020; 215: 108426. doi: 10.1016/j.clim.2020.108426
  25. Vojdani A., Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol. 2020; 217: 108480. doi: 10.1016/j.clim.2020.108480

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies