Особенности и направления развития метода лазерной абляции для синтеза наночастиц

Обложка

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В статье представлен аналитический обзор литературы, касающейся особенностей процесса лазерной абляции для синтеза наночастиц. Показана перспективность метода лазерной абляции, позволяющего обеспечить заданные требования к характеристикам наночастиц. Приведены основные факторы, влияющие на получаемые наночастицы, такие как параметры лазера (источник, длина волны, флюенс, длительность и частота импульса), материал и геометрические характеристики мишени, состояние окружающей среды (жидкость, газовая среда, вакуум). Определены тенденции развития метода.

Полный текст

Доступ закрыт

Об авторах

Е. С. Шитова

АО «ВНИИНМ»

Email: ESShitova@bochvar.ru
Россия, Москва

Ф. В. Макаров

АО «ВНИИНМ»

Email: ESShitova@bochvar.ru

д. т. н.

Россия, Москва

А. А. Перцев

АО «ВНИИНМ»

Email: ESShitova@bochvar.ru

к. т. н.

Россия, Москва

А. П. Пономаренко

АО «ВНИИНМ»

Email: ESShitova@bochvar.ru
Россия, Москва

А. А. Штраус

АО «ВНИИНМ»

Автор, ответственный за переписку.
Email: ESShitova@bochvar.ru
Россия, Москва

Список литературы

  1. Sportelli M. C. et al. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics. 2018. 7. 3.
  2. Kim M. et al. Synthesis of Nanoparticles by Laser Ablation: A Review. KONA Powder and Particle Journal. 2017; 34(34): 80–90.
  3. Shugaev M. V. et al. Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidification, Vaporization, and Phase Explosion. Handbook of Laser Micro- and Nano-Engineering. 2020. PP. 1–81.
  4. Li X., Guan Y. Theoretical fundamentals of short pulse laser–metal interaction: A review. Nanotechnology and Precision Engineering. 2020; 3(3): 105–125.
  5. Paltauf G., Dyer P. E. Photomechanical processes and effects in ablation. Chem Rev. 2003; 103(2): 487–518.
  6. Phillips K. C. et al. Ultrafast laser processing of materials: a review. Adv Opt Photonics. 2015 7(4): 684–712.
  7. Tsuji T. et al. Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II). J Photochem Photobiol A: Chem. 2001; 145(3): 201–207.
  8. Ash C. et al. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci. 2017; 32(8): 1909–1918.
  9. Hamad A.H. et al. Laser Ablation in Different Environments and Generation of Nanoparticles. Applications of Laser Ablation – Thin Film Deposition, Nanomaterial Synthesis and Surface Modification. IntechOpen, 2016.
  10. Tangwarodomnukun V. Overflow-assisted laser machining of titanium alloy: surface characteristics and temperature field modeling. International Journal of Advanced Manufacturing Technology. 2017; 88 (1–4): 147–158.
  11. He Z. et al. Study of the aluminum ablation features and spectral intensity at a various sample temperature in vacuum environment. Spectrochim Acta Part B At Spectrosc. 2022; 197: 106530.
  12. Semaltianos N. G. Nanoparticles by Laser Ablation of Bulk Target Materials in Liquids. Handbook of Nanoparticles. 2015; PP. 1–22.
  13. Musaev O. et al. Influence of the liquid environment on the products formed from the laser ablation of tin. Applied Physics A. 2013; 113(2): 355–359.
  14. Giorgetti E. et al. TiO2 nanoparticles obtained by laser ablation in water: Influence of pulse energy and duration on the crystalline phase. J Alloys Compd. 2015; 643(S1): S75–S79.
  15. Zamora-Romero N. et al. Synthesis of molybdenum oxide nanoparticles by nanosecond laser ablation. Mater Chem Phys. 2020; Vol. 240.
  16. Kim J. et al. The influence of laser wavelength and fluence on palladium nanoparticles produced by pulsed laser ablation in deionized water. Solid State Sci. 2014; 37: 96–102.
  17. Singh A. et al. Effect of Laser Power on Yield of TiO2 Nanoparticles Synthesized by Pulsed Laser Ablation in Water. Journal of Ceramic Science and Technology. 2017; 8(1): 39–44.
  18. Torrisi L., Torrisi A. Laser ablation parameters influencing gold nanoparticle synthesis in water. Radiation Effects and Defects in Solids. 2018; 173(9–10): 729–739. https://doi.org/10.1080/10420150.2018.1528598
  19. Barreca F. et al. Tungsten trioxide (WO3 – X) nanoparticles prepared by pulsed laser ablation in water. Mater Chem Phys. 2011; 127(1–2): 197–202.
  20. Rafique M. et al. Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature. Opt Quantum Electron. 2019; 51(6): 1–11.
  21. Mintcheva N. et al. Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants. Materials (Basel). 2018; 11(7). https://doi.org/10.3390/ma11071127.
  22. Ismail R. A. et al. Pulsed Laser Ablation of Tin Oxide Nanoparticles in Liquid for Optoelectronic Devices. Silicon. 2021; 13(9): 3229–3237.
  23. Sharif M., Dorranian D. Effect of NaCl Concentration on Silver Nanoparticles Produced by 1064 nm Laser Ablation in NaCl Solution. Molecular Crystals and Liquid Crystals. 2015; 606(1): 36–46.
  24. Giorgetti E. et al. Stable gold nanoparticles obtained in pure acetone by laser ablation with different wavelengths. Journal of Nanoparticle Research. 2012; 14(1).
  25. Solati E., Mashayekh M., Dorranian D. Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl Phys A Mater Sci Process. 2013; 112(3): 689–694.
  26. Baladi A., Mamoory R. S. Study on wavelength and energy effects on pulsed laser ablation synthesis of aluminum nanoparticles in ethanol. 5th International Conference on MEMS NANO, and Smart Systems, ICMENS 2009. IEEE Computer Society. 2009; PP. 218–221.
  27. Aziz W.J., Ali S. Q., Jassim N. Z. Production TiO2 Nanoparticles Using Laser Ablation in Ethanol. Silicon. 2018; 10(5): 2101–2107.
  28. Thongpool V., Asanithi P., Limsuwan P. Synthesis of Carbon Particles using Laser Ablation in Ethanol. Procedia Eng. 2012; 32: 1054–1060.
  29. Zhang J., Lan C. Q. Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution. Mater Lett. 2008; 62(10–11): 1521–1524.
  30. Farahani S.V., Mahmoodi A., Goranneviss M. The effect of laser environment on the characteristics of ZnO nanoparticles by laser ablation. Int Nano Lett. 2016; 6(1): 45–49.
  31. Shalichah C., Khumaeni A. Synthesis of nickel nanoparticles by pulse laser ablation method using Nd: YAG laser. J Phys Conf Ser. 2018; 1025(1): 012002.
  32. Santillán J.M.J. et al. Optical and Magnetic Properties of Fe Nanoparticles Fabricated by Femtosecond Laser Ablation in Organic and Inorganic Solvents. ChemPhysChem. 2017. 18(9): 1192–1209.
  33. Huy Tran Q. et al. Preparation of Silver Nanoparticles Dispersed in Almond Oil Using Laser Ablation Technique. IOP Conf Ser Mater Sci Eng. 2020; 762(1): 012005.
  34. Flores-Castañeda M. et al. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests. J Alloys Compd. 2015; 643(S1): S67–S70.
  35. Sadrolhosseini A.R., Abdul Rashid S., Zakaria A. Synthesis of Gold Nanoparticles Dispersed in Palm Oil Using Laser Ablation Technique. J Nanomater. 2017;12:1–5.
  36. Wang Z. et al. The effect of target size on α-Fe nanoparticle preparation by pulsed laser ablation. Appl Phys A Mater Sci Process. 2009; 97(3): 683–688.
  37. Yang G. W. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog Mater Sci. 2007; 52(4): 648–698.
  38. Azevedo W. M. de et al. Laser Ablation in Liquid: An Unconventional, Fast, Clean and Straightforward Technique for Material Preparation. Applications of Laser Ablation – Thin Film Deposition, Nanomaterial Synthesis and Surface Modification. IntechOpen, 2016.
  39. Sylvestre J. P. et al. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. Journal of Physical Chemistry B. 2004; 108(43): 16864–16869.
  40. Lau Truong S. et al. Generation of Ag nanospikes via laser ablation in liquid environment and their activity in SERS of organic molecules. ApPhA. 2007; 89(2): 373–376.
  41. Liu P. et al. Controllable Fabrication and Cathodoluminescence Performance of High-index Facets GeO2 Micro- and Nanocubes and Spindles upon Electrical-field-assisted Laser Ablation in Liquid. Journal of Physical Chemistry C. 2008; 112(35): 13450–13456.
  42. Harilal S. S. et al. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys Rev E. 2004; 69(2): 026413.
  43. Mozaffari H., Mahdieh M. H. Enhancement of ablation rate and production of colloidal nanoparticles by irradiation of metals with nanosecond pulsed laser in presence of external electric field. Phys Lett A. 2019; 383(7): 646–654.
  44. Scaramuzza S., Zerbetto M., Amendola V. Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: Insights to improve size control and productivity. Journal of Physical Chemistry C. 2016; 120(17): 9453–9463.
  45. Rhim J. W. et al. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem. 2006; 54(16): 5814–5822.
  46. Liu X. et al. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy & Environmental Science. 2017; 10(2): 402–434.
  47. Kohsakowski S. et al. High productive and continuous nanoparticle fabrication by laser ablation of a wire-target in a liquid jet. Appl Surf Sci. 2017; 403: 487–499.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема процесса лазерной абляции для синтеза наночастиц

Скачать (231KB)
3. Рис. 2. Схематическое изображение кратера, образованного при лазерной абляции

Скачать (344KB)
4. Рис. 3. Профиль области лазерной абляции кремниевой мишени после 1 000 импульсов в воздухе (а) и воде (б) [9]

Скачать (137KB)
5. Рис. 4. СЭМ-изображения наночастиц GeO2, полученных при лазерной абляции: a – во внешнем электрическом поле при разности потенциалов 14,5 В; б – при 32 В; в – без приложения внешнего поля [40]

Скачать (473KB)

© Шитова Е.С., Макаров Ф.В., Перцев А.А., Пономаренко А.П., Штраус А.А., 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах