Application of Countercurrent Chromatography in an Analytical Laboratory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review is devoted to the features of the method of liquid chromatography with a free stationary phase (CCC) and its capabilities in the field of isolation, concentration and separation of substances (organic and inorganic) for solving analytical problems. It is shown that the CCC can be used in the analysis of various objects (ultrapure substances, geological samples, oil, vegetable raw materials, pharmaceuticals, soils, etc.). The possibility of creating a reagent concentration gradient in the stationary phase during the chromatographic process as a unique feature of the method is noted.

Full Text

Restricted Access

About the authors

T. A. Maryutina

Institute of Geochemistry and Analytical Chemistry named after. V. I. Vernadsky RAS

Author for correspondence.
Email: tatiana@maryutina.ru

доктор химических наук

Russian Federation, 119991, Moscow, st. Kosygina, 19

E. Yu. Savonina

Institute of Geochemistry and Analytical Chemistry named after. V. I. Vernadsky RAS

Email: tatiana@maryutina.ru

кандидат химических наук

Russian Federation, 119991, Moscow, st. Kosygina, 19

References

  1. Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chrom. A. 2005. 1065:145–168. doi: 10.1016/j.chroma.2004.12.044
  2. Vetter W., Muller M., Englert M., Hammann S. Countercurrent chromatography – when liquid-liquid extraction meets chromatography / Liquid-Phase Extraction Edited by C. F. Poole Elsevier Inc. 2020. P. 290–325. https://doi.org/10.1016/B978–0–12–816911–7.00010–4
  3. Berthod A., Maryutina T., Spivakov B., Shpigun O., Sutherland I. Countercurrent chromatography in analytical chemistry (IUPAC technical report). Pure Appl. Chem. 2009. 81 (2): 355–387. doi: 10.1351/PAC-REP-08-06-05
  4. Terajima Y., Nagatomo R., Nunome M., Harada S., Inoue K. Sustainable chromatographic purification of milbemectin: Application of high-speed countercurrent chromatography coupled with off-line atmospheric pressure solid analysis probe-high resolution mass spectrometry. J. Chrom. A. 2023. 1694. 463901. https://doi.org/10.1016/j.chroma.2023.463901.
  5. Liu C., Xi X., Liu Y., Lu Y., Che F., Gu Y., Yu Y., Li H., Liu J., Wei Y. Isolation of four major compounds of γ-Oryzanol from rice bran oil by ionic liquids modified high-speed countercurrent chromatography and antimicrobial activity and neuroprotective effect of cycloartenyl ferulate in vitro. Chromatographia. 2021. 84: 635–644. https://doi.org/10.1007/s10337–021–04044–9
  6. Yu J., Chang X., Peng H., Wang X., Wang J., Peng D., Gui Sh. A strategy based on isocratic and linear-gradient high-speed counter-current chromatography for the comprehensive separation of platycosides from Platycodi radix. Anal. Methods. 2021. 13: 477–483. doi: 10.1039/d0ay02029j
  7. Wu D-T., Pan Y.-J. Recent development in counter-current chromatography. Chinese Journal of Analytical Chemistry. 2016. 44 (2): 319–326. doi: 10.1016/S1872-2040(16)60908-8
  8. Yang Y., Khan B. M., Zhang X., Zhao Y., Cheong K.-L., Liu Y. Advances in separation and purification of bioactive polysaccharides through high-speed counter-current chromatography. JCS. 2020. 58 (10): 992–1000. doi: 10.1093/chromsci/bmaa063
  9. Maryutina T. A., Spivakov B. Ya. Liquid chromatography with a free stationary phase. Fundamentals of the method and scope of application in inorganic analysis / 100 years of Chromatography. Edited by B. A. Rudenko. M: Nauka. 2003. PP. 507–528 (in Russ.).
  10. Maryutina T. A., Fedotov P. S. Countercurrent chromatography in elemental analysis: from oil to high-purity substances. J. Anal. Chem. 2019. 74 (3): 239–247. doi: 10.1134/S1061934819030092
  11. Dembovski M., Rasmussen H. E., Rowley J. E., Droessler J. E. Separation of rare earth element radioisotopes by reverse-phase high-speed counter-current chromatography. SSRN. 2023. http://dx.doi.org/10.2139/ssrn.4542970
  12. Litvina M. N., Malikov D. A., Maryutina T. A., Kulyako Yu.M., Myasoedov B. F. Separation of U and Pu by countercurrent chromatography with support-free liquid stationary phase in the TBP-White Spirit-nitric acid system. Radiochemistry. 2006. 48 (3): 284–287. doi: 10.1134/S1066362206030143
  13. Roehrer S., Bezold F., Garcia E. M., Minceva M. Deep eutectic solvents in countercurrent and centrifugal partition chromatography. J. Chrom. A. 2016. 1434: 102–110. doi: 10.1016/j.chroma.2016.01.024
  14. Plotka-Wasylka J., Rutkowska M., de la Guardia M. Are deep eutectic solvents useful in chromatography? A short review. J. Chrom. A. 2021. 1639: 461918. doi: 10.1016/j.chroma.2021.461918
  15. Sutherland I. A. Recent progress on the industrial scale-up of counter-current chromatography. J. Chrom. A. 2007. 1151: 6–13. doi: 10.1016/j.chroma.2007.01.143
  16. Yang Y., Yang J., Fang Ch., Gu D., Ma Y., Ito Y. A multilayer coil in type-I counter-current chromatography. J. Chrom. A. 2018. 1541: 47–51. doi: 10.1016/j.chroma.2018.02.022
  17. Shinomiya K., Tokura K., Kimura E., Takai M., Harikai N., Yoshida K., Yanagidaira K., Ito Y. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic–aqueous two-phase solvent systems. J. Chrom. A. 2015. 1392: 48–55. doi: 10.1016/j.chroma.2015.03.011
  18. Ito Y., Menet J.-M. Coil planet centrifuges for high-speed countercurrent chromatography / Countercurrent chromatography. Edited by J.-M. Menet, D. Thiebaut. N.Y.: Marcel Dekker Inc. 1999. PP. 87–120.
  19. Conway W. Countercurrent chromatography. Apparatus, theory and applications. 1990. N.Y.: VCH Publisher Inc. P. 357–441.
  20. Yu J., Sun X., Zhao L., Wang X., Wang X. An efficient method to obtain anti-inflammatory phenolic derivatives from Scindapsus officinalis (Roxb.) Schott. by a high speed counter-current chromatography coupled with a recycling mode. RSC Adv. 2020. 10 (19): 11132–11138. doi: 10/1039/c9ra09453a
  21. Ruttler F., Ormos R., Cannas J., Hammerschick T., Schlag S., Vetter W. Sample preparation of free sterols from vegetable oils by countercurrent chromatography in co-current mode. Anal. Bioanal. Chem. 2023. 415: 4731–4740. https://doi.org/10.1007/s00216-023-04766-9
  22. Gomes Lopes A., Borges R. M., Kuhn S., Garrett R., das Neves Costa F. Combining high-speed countercurrent chromatography three-phase solvent system with electrospray ionization-mass spectrometry and nuclear magnetic resonance to profile the unconventional food plant Syzygium malaccense. J. Chrom. A. 2022. 1677: 463211 https://doi.org/10.1016/j.chroma.2022.463211
  23. Maryutina T. A., Fedotov P. S., Spivakov B. Ya. Application of countercurrent chromatography to preconcentration and separation of inorganic substances: two-phase liquid system. J. Anal. Chem. 1997. 52 (12): 1140–1146.
  24. Fedotov P. S., Maryutina T. A., Grebneva O. N., Kuz’min N.M., Spivakov B. Ya. Use of countercurrent partition chromatography for the preconcentration and separation of inorganic compounds: group extraction of Zr, Hf, Nb, and Ta for their subsequent determination by inductively coupled plasma atomic emission spectrometry. J. Anal. Chem. 1997. 52 (11): 1034–1038.
  25. Maryutina T. A., Fedotov P. S., Spivakov B. Ya. Application of countercurrent chromatography in inorganic analysis / Countercurrent chromatography. Edited by J.-M. Menet, D. Thiebaut. N.Y.: Marcel Dekker Inc. 1999. PP. 171–222.
  26. Spivakov B.Ya., Maryutina T. A., Fedotov P. S., Ignatova S. N. Different two-phase liquid systems for inorganic separations by countercurrent chromatography / Metal-ion separation and preconcentration. Edited by A. H. Bond, M. L. Dietz, R. D. Rogers. Washington: ACS. 1999. P. 333–346.
  27. Maryutina T. A., Savonina E. Y., Katasonova O. N. A combined method of sample preparation for the determination of the element composition of oils. J. Anal. Chem. 2016. 71 (11): С. 1126–1130. doi: 10.1134/S1061934816110101
  28. Savonina E.Yu., Maryutina T. A., Katasonova O. N. Determination of microelements in oil by combined sample preparation technique. Inorg. Mater. 2017 53(14): 1448–1453. doi: 10.1134/S0020168517140151.
  29. Zolotov Yu.A., Spivakov B.Ya., Maryutina T. A., Bashlov V. L., Pavlenko I. V. Partition countercurrent chromatography in inorganic analysis. Fresenius J. Anal. Chem. 1989. 335 (8): 938–944.
  30. Maryutina T. A., Litvina M. N., Malikov D. A., Spivakov B.Ya., Myasoedov B. F., Lecomte M., Hill C., Madic C. Multistage extraction separation of Am(III) и Cm(III) in planet centrifuges. Radiochemistry. 2004. 46 (6): 596–602. doi: 10.1007/s11137-005-0035-4
  31. Myasoedov B. F., Kulyako Y. M., Trofimov T. I., Samsonov M. D., Malikov D. A., Maryutina T. A., Spivakov B. Y. Recovery of U and Pu from simulated spent nuclear fuel by adducts of organic reagents with HNO3 followed by their separation from fission products by countercurrent chromatography. Radiochim. Acta. 2009. 97 (9): 473–477. https://doi.org/10.1524/ract.2009.1649
  32. Hoshi H., Tsuyoshi A., Akiba K. High-speed countercurrent chromatography for separation of americium from lanthanides. J. Radioanal. Nucl. Chem. 2001. 249 (3): 547–550.
  33. Maryutina T. A. Use of reagent concentration gradient in the stationary phase for the separation of palladium(II) and rhodium(III) by countercurrent chromatography. J. Anal. Chem. 2009. 64 (3): 295–298. doi: 10.1134/S1061934809030150
  34. Rudik I. S., Katasonova O. N., Maryutina T. A., Spivakov B. Ya. Comparative analysis of the separation of platinum(IV) and palladium(II) in various gradient elution variants. Analitika. 2020. 10 (3): 196–203. (in Russ.).
  35. Mokhodoeva O., Rudik I., Shkinev V., Maryutina T. Countercurrent chromatography approach to palladium and platinum separation using aqueous biphasic system. J. Сhrom. A. 2021. 1657: 462581. doi: 10.1016/j.chroma.2021.462581
  36. Maryutina T., Spivakov B., Tschöpel P. Application of countercurrent chromatography to the purification of chemical reagents. Fresenius J. Anal. Chem. 1996. 356 (7): 430–434.
  37. Ignatova S. N., Maryutina T. A., Spivakov B.Ya., Karandashev V. K. Group separation of trace rare-earth elements by countercurrent chromatography for their determination in high-purity calcium chloride. Fresenius J. Anal. Chem. 2001. 370: 1109–1113.
  38. Fedyunina N. N., Fedotov P. S., Filosofov D. V., Yakushev E. A. Determination of ultra-low uranium and thorium contents in antique lead by inductively coupled plasma mass spectrometry after their isolation by liquid chromatography with a free stationary phase. Zavodskaya laboratiria. Diagnostika materialov. 2018. 84 (4): 12–15. doi: 10.26896/1028-6861-2018-84-4-12-15 (in Russ.).
  39. Shatrova Y. N., Dzhenloda R. K., Fedotov P. S., Fedyunina N. N., Karandashev V. K. A comparativestudy of methods of the dynamic fractionation of rare earth elements in soils. J. Anal. Chem. 2021. 76 (10): 1144–1152. doi: 10.1134/S1061934821100105
  40. Fedotov P. S., Savonina E.Yu., Wennrich R., Ladonin D. V. Studies on trace and major elements association in soils using continuous-flow leaching in rotating coiled columns. Geoderma. 2007. 142: 58–68. doi: 10.1016/j.geoderma.2007.07.014
  41. Fedotov P. S. Rotating coiled columns in the speciation analysis of natural samples: dynamic fractionation of element forms in soils, sludges, and bottom sediments. J. Anal. Chem. 2012. 67 (5): 399–413. doi: 10.1134/S106193481205005X
  42. Fedotov P. S., Ermolin M. S., Ivaneev A. I., Fedyunina N. N., Karandashev V. K., Tatsy Yu. G. Continuous-flow leaching in a rotating coiled column for studies on the mobility of toxic elements in dust samples collected near a metallurgic plant. Chemosphere. 2016. 146: 371–378. doi: 10.1016/j.chemosphere.2015.11.124
  43. Fedotov P. S., Bauer C., Popp P., Wennrich R. Dynamic extraction in rotating coiled columns, a new approach to direct recovery of polycyclic aromatic hydrocarbons from soils. J. Chrom. A. 2004. 1023 (2): 305–309. doi: 10.1016/j.chroma.2003.10.022
  44. Ermolin M. S., Fedotov P. S., Karandashev V. K., Shkinev V. M. Methodology for separation and elemental analysis of volcanic ash nanoparticles. J. Anal. Chem. 2017. 72 (5): 533–541. doi: 10.1134/S1061934817050069
  45. Ermolin M. S., Fedotov P. S., Levashov E. A., Savonina E.Yu., Ivaneev A. I. Field-flow fractionation of metallic microparticles in a rotating coiled column. Mend. Comm. 2016. 26 (4): 358–359. doi: 10/1016/j.mencom.2016.07.031
  46. Fedotov P. S., Ermolin M. S., Katasonova O. N. Field-flow fractionation of nano- and microparticles in rotated coiled columns. J. Chrom. A. 2015. 1381: 202–209. doi: 10.1016/j.chroma.2014.12.079
  47. Shen Ch.-W., Yu T. Size-fractionation of silver nanoparticles using ion-pair extraction in a counter-current chromatograph. J. Chrom. A. 2009. 1216 (32): 5962–5967. doi: 10.1016/j.chroma.2009.06.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (248KB)
3. Fig.2.

Download (313KB)
4. Fig.3.

Download (312KB)
5. Fig.4.

Download (184KB)

Copyright (c) 2023 Maryutina T.A., Savonina E.Y.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies