Integrated Geochronological and Geochemical Studies of a Probably Impact Zircon Older than 2.8 Ga in Rocks of the Belomorian Eclogite Province

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using laser ablation with inductively coupled plasma, UPThP Pb isotope dating of igneous and metamorphic zircons extracted from aegirineP bearing gneisses in the Gridino melange of the Belomorian eclogite province was carried out. Igneous cores with an age of 2.89-2.83 Ga date of the protoliths. Metamorphic grains and rims yielded an age range of 2.80-1.8 Ga with peaks at ~2.80, 2.75, 2.70 and 1.8 Ga, corresponding to the succession of tectonometamorphic events in the region. Along with typical zircons, the grains with unusual heterogeneous cores, which combine granular, vesicular and vermicular textures, were found. According to Raman spectroscopy the transformations from a crystalline to an amorphous state in them are observed. Microgranular zircons are interpreted as evidence of Mesoarchean impact event ~2.87 Ga or older

Full Text

Restricted Access

About the authors

Ksenia A. Dokukina

Geological Institute RAS

Author for correspondence.
Email: dokukina@mail.ru
ORCID iD: 0000-0002-1007-5909

Ph.D., leading researcher

Russian Federation, Moscow

Aleksandr N. Konilov

Geological Institute RAS

Email: chalma@bk.ru
ORCID iD: 0000-0002-9750-3573

senior researcher

Russian Federation, Moscow

Viktor S. Sheshukov

Geological Institute RAS

Email: r.vssh@yandex.ru
ORCID iD: 0000-0001-9311-8849

Ph.D., leading researcher

Russian Federation, Moscow

Olga I. Okina

Geological Institute RAS

Email: okina@bk.ru
ORCID iD: 0000-0002-1947-4551

leading researcher

Russian Federation, Moscow

Konstantin V. Van

Institute of Experimental Mineralogy RAS

Email: kvv@iem.ac.ru
ORCID iD: 0000-0002-8053-332X

Ph.D., senior researcher

Russian Federation, Chernogolovka

References

  1. Kaulina T. V., Nerovich L. I., Il’chenko V.L., Lialina L. M., Kunakkuzin E. L., Gannibal M. A., Mudruk S. V., Elizarov D. V., Borisenko E. S. Astroblems in the early Earth history: Precambrian impact structures of the Kola-Karelian region (East Baltic shield). In: Geological and Geo-Environmental Processes on Earth (A. K. Shandilya, V. K. Singh, S. C. Bhatt, C. S. Dubey, Eds.) Springer, 2021, pp. 25–37. https://doi.org/10.1007/978-981-16-4122-0_3
  2. Kring D. A. Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology. 2003; 3:133–152. https://doi.org/10.1089/153110703321632471
  3. Glikson A. Y., Vickers J. Asteroid impact connections of crustal evolution. Australian Journal of Earth Sciences. 2010; 57:79–95. https://doi.org/10.1080/08120090903416211
  4. Erickson T. M., Kirkland C. L., Timms N. E., Cavosie A. J., Davison T. M. Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest recognised meteorite impact structure. Nature Communications. 2020; 11(1):300. https://doi.org/10.1038/s41467-019-13985-7
  5. Kamo S. L., Reimold W. U., Krogh T. E., Colliston W. P. A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth and Planetary Science Letters. 1996; 144:369–387. https://doi.org/10.1016/S0012-821X(96)00180-X
  6. Krogh T. E., Kamo S. L., Bohor B. F. Shock Metamorphosed Zircons with Correlated U-Pb Discordance and Melt Rocks with Concordant Protolith Ages Indicate an Impact Origin for the Sudbury Structure. In: Earth Processes: Reading the Isotopic Code (A. Basu, S. Hart, Eds.). AGU, Washington, D.C., 1996, Geophysical Monograph Series, V.95, pp. 343–353. https://doi.org/10.1029/GM095p0343
  7. Nerovich L. I., Kaulina T. V., Bayanova T. B., Il’chenko V.L., Gannibal M. A., Kunakkuzin E. L., Bazai A. V., Mudruk S. V., Borisenko E. S., Sosnovskaya M. A. Granophyre Norites and Diorites of the Jarva-Varaka Massif (Monchegorsk Ore Area, Kola Region, Russia): Geology, Petrography, Geochemistry, Geochronology and Origin. Geochemistry International. 2023; 61(6): 572–592. https://doi.org/10.1134/S0016702923060071
  8. Pati J. K., Qu W. J., Koeberl C., Reimold W. U., Chakarvorty M., Schmitt R. T. Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Meteoritics & Planetary Science. 2017; 52: 722–736. https://doi.org/10.1111/maps.12826
  9. Reimold W. U., Ferrière L., Deutsch A., Koeberl C. Impact controversies: impact recognition criteria and related issues. Meteoritics & Planetary Science. 2014; 49: 723–731. https://doi.org/10.1111/maps.12284
  10. Mashchak M. S., Naumov M. V. The Suavjärvi impact structure, NW Russia. Meteoritics & Planetary Science. 2012; 47: 1644–1658. https://doi.org/10.1111/j.1945-5100.2012.01428.x
  11. Mints M. V., Dokukina K. A., Konilov A. N. The Meso-Neoarchean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Research. 2014; 25:561–584. https://doi.org/10.1016/j.gr.2012.11.010
  12. Володичев О. И., Слабунов А. И., Бибикова Е. В., Конилов А. Н., Кузенко Т. И. Архейские эклогиты Беломорского подвижного пояса, Балтийский щит. Петрология. 2004; 6: 609–631. Volodichev O. I., Slabunov A. I., Bibikova E. V., Konilov A. N., Kuzenko T. I. Archean eclogites in the Belomorian mobile belt, Baltic Shield. Petrology. 2004; 12(6):540–560.
  13. Конилов А. Н., Шешуков В. С., Пожиленко В. И., Ван К. В., Бондаренко Г. В., Голованова Т. И., Ермолаев Б. В., Дубенский А. С., Понкратов К В., Шкляр Н. Е. Цирконология и возраст Fe-Ti-эклогитов Беломорской провинции. Аналитика. 2020; 10(5): 386–402. https://doi.org/10.22184/2227-572X.2020.10.5.386.402 Konilov A. N., Sheshukov V. S., Pozhilenko V. I., Van K. V., Bondarenko G. V., Golovanova T. I., Ermolaev B. V., Dubensky A. S., Ponkratov K. V., Shklyar N. E. Zirconology and Age of the Fe-Ti Eclogites from Belomorian Province. Analytics. 2020; 10(5): 386–402. https://doi.org/10.22184/2227-572X.2020.10.5.386.402
  14. Конилов А. Н., Голованова Т. И., Понкратов К. В. Алюмосиликатное стекло старше 1,9 млрд лет и его свойств. По данным исследования методами истинной катодолюминесценции и спектроскопии комбинационного рассеяния. Аналитика. 2016; 6(4): 114–122. https://www.j-analytics.ru/files/article_pdf/5/article_5611_319.pdf Konilov A. N., Golovanova T. I., Ponkratov K. V. Aluminosilicate glass over 1.9 ga of age and its properties insights from true-color cathodoluminescence and Raman spectroscopy. Analytics. 2016; 6(4): 114–122. https://www.j-analytics.ru/files/article_pdf/5/article_5611_319.pdf
  15. Новиков И. А., Грибоедова И. Г., Голованова Т. И. Интерпретация паттерна катодолюминесценции на примере фторапатита косьвитов массива Кондер (Алдан). Аналитика. 2017; 7(1): 88–97. https://doi.org/10.22184/2227–572X.2017.32.1.88.106 Novikov I. A., Griboedova I. G., Golovanova T. I. Interpretation of cathodoluminescence patterns by the example of fluorapatites from Kondyor koswites (Aldan shield). Analytics. 2017; 7(1): 88–97. https://doi.org/10.22184/2227-572X.2017.32.1.88.106
  16. Конилов А. Н., Пожиленко В. И., Ван К. В., Голованова Т. И., Пронина Н. В., Шкляр Н. Е., Понкратов К. В. Исследование эклогитов Беломорской провинции современными аналитическими методами. Аналитика. 2018; 8(4):364–375. https://doi.org/10.22184/2227–572X.2018.41.4.364.375 Konilov A. N., Pozhilenko V. I., Van K. V., Golovanova T. I., Pronina N. V., Shklyar N. E., Ponkratov K. V. Study of eclogites from the Belomorian province by using of modern analytical methods. Analytics. 2018; 8(4):364–375. https://doi.org/10.22184/2227-572X.2018.41.4.364.375
  17. Wiedenbeck M. P.A., Corfu F., Griffin W. L., Meier M., Oberli F., von Quadt A., Roddick J. C., Spiegel W. Three natural zircon standards for U-Th- Pb, Lu- Hf, trace element and REE analyses. Geostandards and Geoanalytical Research. 1995; 19: 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
  18. Van Achterbergh E., Ryan C. G., Jackson S. E., Griffin W. L. Data reduction software for LA-ICP-MS: appendix. In: (Sylvester P. J., Ed.), Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications. Mineralogical Association of Canada (MAC), Ottawa, Ontario, Canada. 2001, Short Course Series, V.29, pp. 239–243.
  19. Lokhov K. I., Sibelev О. S., Slabunov А. I., Bogomolov E. S., Prilepsky E. B. Endogenous and sedimentary carbonate rocks from the Belomorian province: new geochemical, isotopic and geochronological data. Geochemistry of Magmatic Rocks. Abstracts of XXVI International conference “Geochemistry of Alkaline rocks”. Moscow: GEOKHI RAS Publ. 2009, p. 93–94.
  20. Whitney D. L., Evans B. W. Abbreviations for names of rock-forming minerals. American Mineralogist. 2010; 95: 185–187. https://doi.org/10.2138/am.2010.3371
  21. Sun S. S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: (Saunders A. D., Norry M. J., Eds.). Magmatism in the Ocean Basins. Geological Society, London. 1989, Special Publications, V.42, pp.313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.1
  22. Watson E. B., Wark D. A., Thomas J. B. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology. 2006; 151: 413–433. https://doi.org/10.1007/s00410-006-0068-5
  23. Ferry J. M., Watson E. B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology. 2007; 154: 429–437. https://doi.org/10.1007/s00410-007-0201-0
  24. Wittmann A., Kenkmann T., Schmitt R. T., Stöffler D. Shock-metamorphosed zircon in terrestrial impact craters. Meteoritics & Planetary Science. 2006; 41(3): 433–454. https://doi.org/10.1111/j.1945-5100.2006.tb00472.x
  25. Li S.-S., Keerthy S., Santosh M., Singh S. P., Deering C. D., Satyanarayanan M., Praveen M. N., Aneeshkumar V., Indu G. K., Anilkumar Y., Sajinkumar K. S. Anatomy of impactites and shocked zircon grains from Dhala reveals Paleoproterozoic meteorite impact in the Archean basement rocks of Central India. Gondwana Research. 2018; 54:81–101. https://doi.org/10.1016/j.gr.2017.10.006
  26. Zhang M., Salje E. K.H., Farnan I., Graeme-Barber A., Daniel P., Ewing R. C., Clark A. M., Leroux H. Metamictization of zircon: Raman spectroscopic study. Journal of Physics: Condensed Matter. 2000; 12(8): 1915–1925.
  27. Zamyatin D. A. Application of Raman Spectroscopy for Studying Shocked Zircon from Terrestrial and Lunar Impactites: A Systematic Review. Minerals. 2022; 12(8):969. https://doi.org/10.3390/min12080969
  28. Miyahara M., Tomioka N., Bindi L. Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials. Progress in Earth and Planetary Science. 2021; 8:59. https://doi.org/10.1186/s40645-021-00451-6
  29. Bohor B. F., Betterton W. J., Krogh T. E. Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth and Planetary Science Letters. 1993; 119: 419–424. https://doi.org/10.1016/0012-821X(93)90149-4
  30. Herrmann M., Kenny G. G., Martell J. N., Whitehouse M. J., Alwmark C. The first U–Pb age for shocked zircon from the Mien impact structure, Sweden, and implications for metamictization-induced zircon texture formed during impact events. Meteoritics & Planetary Science. 2024; 59(1): 211–241. https://doi.org/10.1111/maps.14116
  31. Corfu F., Hanchar J. M., Hoskin P. W.O., Kinny P. Atlas of zircon textures. In: Zircon (Hanchar J. M., Hoskin P. W.O., Eds.) Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. 2003; 53(16): 469–500. https://doi.org/10.2113/0530469
  32. Hauser N., Reimold W. U., Cavosie A. J., Crosta A. P., Schwarz W. H., Trieloff M., De Souza C. D.S.M., Pereira L. A., Rodrigues E. N., Brown M. Linking shock textures revealed by BSE, CL, and EBSD with U-Pb data (LA-ICPMS and SIMS) from zircon from the Araguainha impact structure, Brazil. Meteoritics & Planetary Science. 2019; 54(10): 2286–2311. https://doi.org/10.1111/maps.13371
  33. Cavosie A. J., Timms N. E., Erickson T. M., Hagerty J. J., Hörz F. P. Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA). Geology. 2016; 44: 703. https://doi.org/10.1130/G38043.1
  34. Ewing R. C., Wang L., Meldrum A., Weber W. J., Corrales L. R. Radiation effects in zircon. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. 2003; 53: 387–425. https://doi.org/10.2113/0530387
  35. Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology. 2002; 184: 123–138. https://doi.org/10.1016/S0009-2541(01)00355-2
  36. Hoskin P. W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. In: Zircon (Hanchar J. M., Hoskin P. W.O., Eds.) Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. 2003; 53: 27–62. https://doi.org/10.2113/0530027
  37. Hoskin P. W. O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta. 2005; 69: 637–648. https://doi.org/10.1016/j.gca.2004.07.006
  38. Mihailova B., Waeselmann N., Stangarone C., Angel R. J., Prencipe M., Alvaro M. The pressure-induced phase transition(s) of ZrSiO4: revised. Physics and Chemistry of Minerals. 2019; 46: 807–814. https://doi.org/10.1007/s00269-019-01041-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Field photo of the outcrop (a): alternating interlayers of silicate dolomite marbles and gneiss. Red arrows indicate the surfaces of discontinuous faults and displacement of rocks, blue arrows indicate the dissected bodies of marbles; micrography in transmitted light, nichols parallel (b) and BSE image (c) of aegirine-containing gneiss, sample D62-1. Qtz is quartz, an abbreviation of other minerals according to [20]. The length of the scale lines is 500 microns

Download (1MB)
3. Fig. 2. Micrographs in crossed nichols, BSE images, EPMA-CL (tc) patterns of zircons of different populations in the sample D62-1 and concordia diagrams corresponding to them (populations)

Download (1MB)
4. Fig. 3. Generalized results of Th-U-Pb dating and geochemistry of zircons from aegirine-containing gneiss, sample D62-1. a – concordia diagram for all obtained age values (40 definitions); b – histogram of 207Pb/ 206Pb ages; c – Th/U-ratios in zircons with 207Pb/206Pb ages; g – spectra of rare earth elements in the studied zircons, chondrite according to [21]

Download (810KB)
5. Fig. 4. BSE images of zircons with heterogeneous nuclei, sample D62-1: a – zircon, grain 3 (Zrn3); b – zircon, grain 5 (Zrn5). The length of the scale lines is 50 microns

Download (289KB)
6. Fig. 5. Maps of the distribution of elements in zircons with heterogeneous nuclei: (a) Zrn3; (b) Zrn5

Download (1MB)
7. Fig. 6. Graphs of changes in the signals obtained during ablation of zircon grains of sample D62-1, depending on the time (depth) of ablation. Spectra characterizing the change in signal intensity for elements obtained in the Glitter program [18]: a – normal spectrum; b, c – abnormal spectra; d – a specific example of signal changes in zircon, grain 3

Download (1MB)
8. Fig. 7. Raman spectra (raw spectra) in heterogeneous zircon nuclei. In Zrn3 grain there are red lines, in Zrn5 grain there are blue lines. For comparison , the typical spectrum of zircon (Zrn4) is presented on the example of grain from a population of Paleoproterozoic age in grain 4 – green lines. The quartz lines are marked with asterisks (~120 and 464 cm−1). Laser λ = 532 nm

Download (463KB)

Copyright (c) 2024 Dokukina K.A., Konilov A.N., Sheshukov V.S., Okina O.I., Van K.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies