Application of Additive Technologies in Analytical Chemistry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Today is marked by the active introduction of additive technologies into various fields of science and production, allowing the creation of devices, functional prototypes and structures with complex geometry. The use of additive technologies in analytical chemistry opens up new opportunities for researchers: the time and economic costs of developing and manufacturing new devices, reactors, specialized chemical glassware, etc. are significantly reduced. One of the most promising areas is associated with the use of 3D printing to create new equipment and produce parts with a complex internal spatial configuration, including for the repair of analytical equipment. The article describes the equipment and materials used in additive technologies, and examples of their successful application to solve problems of analytical chemistry.

Full Text

Restricted Access

About the authors

Denis A. Trofimov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: trofimov.da@geokhi.ru
ORCID iD: 0000-0003-0790-0338

PhD, Research Associate

Russian Federation, 119991 Moscow, ul. Kosygina 19

Andrey A. Ushkarew

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: trofimov.da@geokhi.ru

Research Associate

Russian Federation, 119991 Moscow, ul. Kosygina 19

References

  1. Пройдаков Э. М. 3D-печать как новое научно-техническое направление. Науковедческие исследования. Сборник научных трудов. 2014;1:146–154. Proydakov E. M. The 3D printing as the new scientific and technical direction, Naukovedcheskie issledovaniya=Science studies. Collection of scientific papers. 2014;1:146–154.
  2. Bethany Gross, Sarah Y. Lockwood, and Dana M. Spence Recent Advances in Analytical Chemistry by 3D Printing. Analytical Chemistry. 2017;89:57–70. doi: 10.1021/acs.analchem.6b04344.
  3. Сергеева В. С., Бысова Т. В., Смирнов В. А., Поначугин А. В. Проблемы применения методов 3d-моделирования и 3d-печати в науке и производстве. Экономика и управление: проблемы, решения. 2021;4:10(118):31–36. doi: 10.36871/ek.up.p.r.2021.10.04.005. Sergeeva V. S., Bysova T. V., Smirnov V. A., Ponachugin A. V. Problems of using methods of 3d modeling and 3d printing in science and production. Economica I upravlenie: problemy, resheniya=Economic development research journal. 2021;4:10(118):31–36. doi: 10.36871/ek.up.p.r.2021.10.04.005.
  4. Муравский А. А., Аликин М. Б., Дворко И. М., Лавров Н. А. Полимерная 3D-печать: история, классификация и современные тенденции развития. Известия СПбГТИ(ТУ). 2023;64(90):58–66. doi: 10.36807/1998-9849-2023-64-90-58-66. Muravskiy A. A., Alikin M. B., Dvorko I. M., Lavrov N. A. Polymer 3d Printing: History, Classification and Current Development Trends (Review). Izvestiya SPbGTI(TU)=News of SPbGTI(TU). 2023;64(90):58–66. doi: 10.36807/1998-9849-2023-64-90-58-66.
  5. Обработка моделей, напечатанных из полимера по технологии LCD, SLA, DLP. Сайт 3D Sercices.ru. URL: https://3d-services.ru/wp-content/uploads/2021/10/udalenie-podderzhek-s-modeli_2.jpg. Processing of models printed from polymer using technology LCD, SLA, DLP. 3D Sercices.ru. Available at: https://3d-services.ru/wp-content/uploads/2021/10/udalenie-podderzhek-s-modeli_2.jpg [Accessed 10.12.2024] (in Russ).
  6. Nesterenko P. N. 3D printing in analytical chemistry: current state and future. Pure and Applied Chemistry. 2020;92(8):1341–1355. https://doi.org/10.1515/pac-2020-0206.
  7. Малов И. Е. Тенденции развития технологии селективного лазерного спекания. Наукоемкие технологии в машиностроении. 2014;3(33):20–25. Malov I. E. Tendencies of development of selective laser sintering technologies. Naukoemkie technologii v mashinostroenii=Science intensive technologies in mechanical engineering. 2014;3(33):20–25.
  8. Lujun Wang. Martin Pumera. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. Trends in Analytical Chemistry. 2021;135:116151. https://doi.org/10.1016/j.trac.2020.116151.
  9. Gupta V., Nesterenko P., Paull B. 3D Printing in Chemical Sciences: Applications across Chemistry. Royal Society of Chemistry. 2019. 264 p.
  10. Cheng-Kuan Su. Review of 3D-Printed functionalized devices for chemical and biochemical analysis. Analytica Chimica Acta. 2021;1158:338348. https://doi.org/10.1016/j.aca.2021.338348.
  11. Douglas A. Hill, Lindsey E. Anderson, Casey J. Hill, Afshin Mostaghim, Victor G. J. Rodgers, William H. Grover MECs: “Building Blocks” for Creating Biological and Chemical Instruments. PLoS ONE. 2016;11(7):1. doi: 10.1371/journal.pone.0158706.
  12. D. J. Cocovi-Solberg, M. Miro. 3D printed extraction devices in the analytical laboratory – a case study of Soxhlet extraction. Analytical and Bioanalytical Chemistry. 2021;413(17):4373. https://doi.org/10.1007/s00216-021-03406-4.
  13. Melisa Rodas Ceballos, Francisco Gonzalez Serra, Jose Manuel Estela, Victor Cerdа, Laura Ferrer. 3D printed resin-coated device for uranium (VI) extraction. Talanta 2019;196:510–514. https://doi.org/10.1016/j.talanta.2018.12.055.
  14. Carlos Calderilla, Fernando Maya, Victor Cerdа, Luz O. Leal. 3D printed device for the automated preconcentration and determination of chromium (VI). Talanta 2018;184:15–22. https://doi.org/10.1016/j.talanta.2018.02.065.
  15. Carlos Calderilla, Fernando Maya, Luz O. Leal, Victor Cerda. Recent advances in flow-based automated solid-phase extraction. Trends in Analytical Chemistry 2018;108:370–380. https://doi.org/10.1016/j.trac.2018.09.011.
  16. Mardani S., Ojala L. S., Uusi-Kyyny P., Alopaeus V. Development of a unique modular distillation column using 3D printing. Chemical Engineering and Processing. 2016;109:136. https://doi.org/10.1016/j.cep.2016.09.001.
  17. Martinez-Jarquin S., Moreno-Pedraza A., Cazarez-Garcia D., Winkler R. Automated chemical fingerprinting of Mexican spirits derived from Agave (tequila and mezcal) using direct-injection electrospray ionisation (DIESI) and low-temperature plasma (LTP) mass spectrometry. Analytical Methods. 2017;9(34):5023. https://doi.org/10.1039/C7AY00793K.
  18. Martinez-Jarquin S., Moreno-Pedraza A., Guillen-Alonso H., Winkler R. Template for 3D Printing a Low-Temperature Plasma Probe. Analytical Chemistry. 2016;88(14):6976. https://doi.org/10.1021/acs.analchem.6b01019.
  19. Shreenath Krishnamurthy, Raf Roelant, Richard Blom, Bjørnar Arstad, Zuoan Li, Marleen Rombouts, Vesna Middelkoop, Adolfo Benedito Borras, Lapo Naldoni. Scaling up 3D printed hybrid sorbents towards (cost) effective post-combustion CO2 capture: A multiscale study. International Journal of Greenhouse Gas Control. 2024;132:104069 https://doi.org/10.1016/j.ijggc.2024.104069.
  20. Diego Barzallo. Edwin Palacio. Juan March. Laura Ferrer. 3D printed device coated with solid-phase extraction resin for the on-site extraction of seven sulfonamides from environmental water samples preceding HPLC-DAD analysis. Microchemical Journal. 2023;190. https://doi.org/10.1016/j.microc.2023.108609.
  21. Kari B. Anderson, Sarah Y. Lockwood, R. Scott Martin, Dana M. Spence A. 3D Printed Fluidic Device that Enables Integrated Features. Analytical Chemistry. 2013;85:5622. 3265. dx.doi.org/10.1021/ac400.
  22. Elodie Mattioa, Fabien Robert-Peillarda, Catherine Brangerb, Kinga Puziob, Andre Margaillanb, Christophe Brach-Papac, Joel Knoeryc, Jean-Luc Boudennea, Bruno Coulomb. 3D-printed flow system for determination of lead in natural waters. Talanta. 2017;168:298. http://dx.doi.org/10.1016/j.talanta.2017.03.059
  23. Michelle P. Browne, Edurne Redondo, and Martin Pumera. 3D Printing for Electrochemical Energy Applications. Chemical Reviews. 2020;120(5):2783–2810. https://dx.doi.org/10.1021/acs.chemrev.9b00783
  24. Sergio Rossi, Alessandra Puglisi, Maurizio Benaglia. Additive Manufacturing Technologies: 3D Printing in Organic Synthesis. ChemCatChem. 2018;10(7):1512. https://doi.org/10.1002/cctc.201701619
  25. Гордеев Е. Г., Анаников В. П. Oбщeдocтyпныe тexнoлoгии 3D-пeчaти в xимии, биoxимии и фapмaцeвтикe: пpилoжeния, мaтepиaлы, пepcпeктивы. Успехи Химии. 2020. Т. 89(12). С. 1507. https://doi.org/10.1070/RCR4980. Gordeev E. G., Ananikov V. P. Publicly available 3D printing technologies in chemistry, biochemistry and pharmaceuticals: applications, materials, perspectives. Uspehi Himii=Russian Chemical Reviews. 2020;89(12):1507–1561 https://doi.org/10.1070/RCR4980.
  26. Matheus C. Carvalho, Joanne M. Oakes. Turning a 3D Printer into a HPLC Fraction Collector: A Tool for Compound-Specific Stable Isotope Measurements. Hardware. 2023;1(1):29. https://doi.org/10.3390/hardware1010004.
  27. Лопатина Ю. А. Применение 3D-печати методом FDM при ремонте машин и оборудования. Технический сервис машин. 2019;3(136):40–45. Lopatina Yu. A. Application of 3D printing by FDM method for repairing machinery and equipment. Technicheskii service mashin=Machinery technical service. 2019;3(136):40–45.
  28. Самохин А. С. Шприцевой насос, изготовленный при использовании технологии 3d печати и платформы Arduino. Журнал Аналитической Химии. 2020;75(3):281–287. 10.31857/S0044450220030159. Samokhin A. S. Syringe pump created using 3D printing technology and arduino platform. Journal of Analytical Chemistry. 2020;75(3):416–421. 10.31857/S0044450220030159.
  29. Gordeev E. G., Degtyareva E. S., Ananikov V. P. Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Rossiiskii Himicheskii Bulletin=Russian Chemical Bulletin, International Edition. 2016;65(6):1637
  30. Andrew J. Capel, Andrew Wright, Matthew J. Harding, George W. Weaver, Yuqi Li, Russell A. Harris, Steve Edmondson, Ruth D Goodridge, Steven D R Christie. 3D printed fluidics with embedded analytic functionality for automated reaction optimization. Beilstein Journal of Organic Chemistry. 2017;13:111. https://doi.org/10.3762/bjoc.13.14
  31. Cheng-Kuan Su, Pei-Jin Peng, and Yuh-Chang Sun. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater. Analytical Chemistry. 2015;87(13): 6945–6950. 10.1021/acs.analchem.5b01599
  32. Conan Fee, Suhas Nawada, Simone Dimartino. 3D printed porous media columns with fine control of column packing morphology. Journal of Chromatography A. 2014;1333:18. doi: 10.1016/j.chroma.2014.01.043
  33. Wang H. Cocovi-Solberg D. J. Hu B. Miró M. 3D printed micro-flow injection analysis platform for on-line magnetic nanoparticle sorptive extraction of antimicrobials in biological specimens as a front end to liquid chromatographic assays. Analytical Chemistry. 2017;89(22):12541. doi: 10.1021/acs.analchem.7b03767

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Post-processing of the finished product, removal of "supports" [5]

Download (418KB)
3. Fig. 2. Stages of additive manufacturing of the product [4]

Download (177KB)
4. 3. Laboratory equipment manufactured by the FDM method: a – round and conical flasks, funnel, beaker, test tubes of various sizes; b – stand for test tubes [24], c – stand for three test tubes, d – round-bottomed flask, on "supports" [25]

Download (275KB)
5. 4. Tubes printed from various types of plastic: a – short tubes with non–threaded caps (ABS); b - 3D–printed threads on the outside of the tube and inside the cap; c - elongated tubes with screw caps made of various materials [29]

Download (157KB)
6. Fig. 5. The finished version, assembled using the multifluidic evolutionary component (MAC) system [11]

Download (515KB)
7. Fig. 6. SPE pre-concentrator cartridge for solid–phase extraction: (a) a diagram of the pre-concentrator; (b– a photograph of the cuboid structure [31]

Download (114KB)
8. Fig. 7. Porous columns of various shapes: a, b, c – cubic; d, e, e – with parallel channels; g, z, i – in the form of "Christmas tree" channels; where a, g, w – graphic images in the form of CAD drawings; b, e, z – printed model; b, e, and I – channel structure at 20x magnification [32]

Download (554KB)
9. 8. Various shapes of extraction devices made by 3D printing for SAS extraction in the form of: a – small cubes; b – perpendicular lines; c – small tetrahedra [20]

Download (260KB)
10. Fig. 9. Multichannel testing system for biologically active substances: general view and diagram (inlet and outlet, channel for liquid flow under the membrane) [21]

Download (351KB)
11. Fig. 10. Diagram of a microfluidic device with an internal channel measuring 800 microns, where blue indicates the microchannel itself and the mating parts for connecting standard fittings, gray indicates NdFeB magnets [33]

Download (120KB)
12. 11. Sketches of cell models (a) and a scheme of magnetic solid-phase extraction in dynamic mode (b)

Download (237KB)

Copyright (c) 2025 Trofimov D.A., Ushkarew A.A.