FEATURES OF THE MICROBIOTA OF MATURE AND ELDERLY AGE IN NORMAL AND CHRONIC RHINOSINUSITIS


Cite item

Full Text

Abstract

Aging is a natural process that is associated with morpho-functional rearrangement. Objective: to study the microbiota in a comparative aspect in adult patients with CRS aged 60-95 years and 45-59 years inclusive.

Materials and methods. The work was performed in GBUZ VOKB No. 1 on the basis of the otorhinolaryngological adult department, laboratory studies and identification of microorganisms were performed in the bacteriological department of the CDL Clinic No. 1 of the Federal State Budgetary Educational Institution of the Russian Ministry of Health. All patients underwent an endoscopic examination of the nasal cavity with a smear from the middle nasal passage. After sampling, the material was delivered to the laboratory for all types of bacteriological examination and identification of microorganisms.

Results. During the bacteriological study, 6 genera and 12 species of microorganisms were isolated (relative frequency of isolation %), of which Staphylococcus spp. (78.45%) and Enterococcus spp. (16.45%) were the main representatives of the microbiota of the nasal cavity in patients 45-95 years old. Staphylococcus spp. represent the basis of the microbiotype in the sinonasal microbiome and the predominant genus in patients, regardless of the pathology of the nose and paranasal sinuses.

The bacterial species Staphylococcus aureus (45.48%), Staphylococcus haemolyticus (19.57%) and Enterococcus faecalis (9.99%) were the three dominant types in all age groups. However, in patients aged 60-95 years with CRS, in addition to the above groups of Staphylococcus spp. (66.67%), Enterococcus spp. (10.67%), representatives of the groups Pseudomonadales (6.01%), Candidiales (6.0%) were seeded. In patients aged 60-95 years with CRS, the microbial landscape of the nasal mucosa is represented by various types of Staphylococcus spp.

Conclusions. The microbiota in patients with CRS aged 60-95 years is very diverse compared to younger age and patients without inflammatory diseases of the nose and paranasal sinuses.

Full Text

Restricted Access

About the authors

Natalia V. Tarasova

Volgograd State Medical University

Email: tarasova.nv@ruskmv.ru
ORCID iD: 0000-0003-1929-5155
SPIN-code: 7889-4220

MD, Dr. Sci. (Med.), professor

Russian Federation, Volgograd

Irina S. Stepanenko

Volgograd Medical University

Email: ymahkina@mail.ru
ORCID iD: 0000-0001-5793-438X
SPIN-code: 4826-6040
Scopus Author ID: 643365

Doctor of Medical Sciences , Professor

Russian Federation, Volgograd st. Square of Fallen Fighters, 1

Eleonora B. Belan

Volgograd State Medical University

Email: belan.eleonora@yandex.ru
ORCID iD: 0000-0003-2674-4289

Dr. Sci. (Med.), Professor, Head of the Department of Immunology and Allergology

Russian Federation, Volgograd

Maria Sokolova

Volgograd state medical university

Author for correspondence.
Email: mulia2585@yandex.ru
ORCID iD: 0009-0001-5503-2646

Аспирант кафедры оториноларингологии 

Russian Federation, Volgograd st. Square of Fallen Fighters, 1

Vyacheslav A. Kosov

Volgograd Medical University

Email: Slava.kosov.1999@bk.ru
SPIN-code: 6907-0278
Scopus Author ID: 1236738
Russian Federation, Volgograd st. Square of Fallen Fighters, 1

References

  1. Lopatin A.S., Azizov I.S., Kozlov R.S. Microbiome of the nasal cavity and paranasal sinuses in normal and pathological conditions. Part I. Russian Federation. 2021;29(1):23-30. https://doi.org/10.17116/rosrino20212901123
  2. Payganova, N. E. Prospects for the use of antimicrobial peptides in otorhinolaryngology in conditions of growing antibiotic resistance / N. E. Payganova, A. P. Yastremsky // Bulletin of otorhinolaryngology. - 2021. – VOL. 86, No. 3. – PP. 104-109. – doi: 10.17116/otorino202186031104. – EDITOR OF LUPICR.
  3. Karpinenko, S. A. Acute nose (presbinazalis) in the practice of an otorhinolaryngologist / S. A. Karpinenko, G. V. Lavrenova, P. I. Gaskova // Successes of geology. - 2022. – Vol. 35, No. 2. – pp. 308-314. – doi: 10.34922/AE.2022.35.2.016. – EDN XKQMBU.
  4. Read TD, Petit3rd RA, Yin Z, Montgomery T, McNulty MC, Michael Z, David MZ. USA300 Staphylococcus aureus persists in several areas of the body after infection. Microbiology of BMC. 2018;5(18):206. https://doi.org/10.1186/s12866-018-1336-z
  5. Ramakrishnan V.R., Fizel L.M., Gitomer S.A., Robertson K.E., Frank D.N. Microbiome of the middle auditory canal in healthy adults. PLoS One. 2020;8: e85507. https://doi.org/10.1371/journal.pone.0085507
  6. Bassiuni A, Paramasivan S, Schiffer A, Dillon Mr., Cope EK, Cooksley S, Ramezanpour M, Moraitis S, Javed Ali M, Bleyer B.S., Callejas S, Cornet ME, Douglas R.G., Dutra D, Georgalas S, Harvey R.J., Hwang P., Luong AU, Schlosser R.J., Tantilipikorn P., Tufik MA, Vreugde S., Wormald P.-J., Caporaso J.G., Psaltis A.J. Microbiotyping of the synonasal microbiome. Frontiers in cellular and infectious microbiology. 2020;10:137. https://doi.org/10.3389/fcimb.2020.00137
  7. Lavrenova, G. V. Postnasal syndrome in patients with chronic heart failure / G. V. Lavrenova, K. A. Ohanyan // Folio of otorhinolaryngology and pathology of respiratory organs. - 2023. – Vol. 29, No. 3. – pp. 86-95. – doi: 10.33848/foliorl23103825-2023-29-3-86-95. – EDN YURVNTK.
  8. Stubbendik R.M., May D.S., Chevrett M.G., Temkin M.I., Wendt-Pienkowski E., Kagnazzo J., Carlson K.M., Gern J.E., Curry KR. Competition among nasal bacteria suggests the role of siderophore-mediated interactions in the formation of the human nasal microbiota. Applied microbiology and environmental microbiology. 2019;85(10): e02406-2418. https://doi.org/10.1128/AEM.02406-18
  9. Bassis S.M., Tan A.L., Yang V.B., Pinnonen M.A. Microbiota of the nasal cavity of healthy adults. The microbiome. 2020, August 11;2:27 a.m. doi: 10.1186/2049-2618-2-27. PMID: 25143824; PMCID: PMC4138944.
  10. Lavrenova, G. V. Drug-induced rhinitis in patients with increased vision / G. V. Lavrenova, K. A. Ohanyan // Folio of otorhinolaryngology and pathology of Respiratory diseases. - 2022. – Vol. 28, No. 2. – pp. 46-52. – doi: 10.33848/foliorl23103825-2022-28-2-46-52. – EDN EVULU.
  11. Copeland E, Leonard K, Carney R, Kong J, Forer M, Naidu Yu, Oliver BGG, Seymour Jr., Woodcock S, Burke Cm, Stowe SZ. Chronic rhinosinusitis: the potential role of microbial dysbiosis and recommendations for sampling sites. The boundaries of cellular and infectious microbiology. 2018;8(57):1-14. https://doi.org/10.3389/fcimb.2018.00057
  12. Dixon R., Erbound J., Martinez F., Huffnagle G. Microbiome and respiratory tract. Public Access HHS. 2017;78:481-504. https://doi.org/10.1146/annurev-physiol-021115-105238
  13. Makhdavinia M., Keshavarzyan A., Tobin M.K., Landey A.L., Shleimer R.P. Comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clinical allergy. January 2018;46(1):21-41. doi: 10.1111/cea.12666. PMID: 26510171; PMCID: PMC4715613.
  14. Kumpich S., Koskinen K., Schepf V., Moisl-Eichinger S. Microbiome of the upper respiratory tract in health and diseases. Biology BMC. 2019;17:87. https://doi.org/10.1186/s12915-019-0703-z
  15. Teo S.M., Mock D., Pham K., Kusel M., Serralia M., Troy N., Holt B.J., Hales B. J., Walker Jr., Hollams E., Bochkov Ya., Grindle K., Johnston S.L., Jern J., Sly P.D., Holt P.G., Holt K.E., Inouye M. The microbiome of an infant's nasopharynx affects the severity of lower respiratory tract infection and the risk of asthma. The host cell and the microbe. 2021;17(5): 704-715. https://doi.org/10.1016/j.chom.2015.03.008
  16. Ipki K., Altintoprak N., Bayar Muluk N., Senturk M., Singi S. Possible mechanisms of the human microbiome in allergic diseases. European Archive of Otorhinolaryngology. 2017;274(2):617-626. https://doi.org/10.1007/s00405-016-4058-6
  17. Al-Shayeb B, Sachdeva R, Lin-Sin Chen LH, Ward F, Munk P, Devoto A, Castelle CJ, Olm MR, Buma-Gregson K, Amano Yu, He S, Mekheust R, Brooks B, Thomas A, Lavi A, Mateus-Carnevali P, San S, Goltzman DSA, Borton MA, Sharrar A, Jeff EL, Nelson TS, Kantor R, Keren R, Lane KR, Farag IF, Lei S, Finstad K, Amundson R, Anantaraman K, Zhou J, Probst A.J., Power ME, Tringe S.G., Lee Wu-J., Righton K, Harrison S., Morowitz M., Relman D.A., Dudna J.A., Lehurs A.K., Warren L., Keith D.H.D., Santini D.M., Banfield J.F. Hoards of huge phages from all ecosystems of the Earth. Nature. 2020;578(7795):425-431. https://doi.org/10.1038/s41586-020-2007-4
  18. Bassiouni A, Paramasivan S, Schiffer A, Dillon Mr., Cope EK, Cooksley S, Ramezanpour M, Moraitis S, Javed Ali M, Bleyer B.S., Callejas S, Cornet ME, Douglas R.G., Dutra D, Georgalas S, Harvey R.J., Hwang P., Luong AU, Schlosser R.J., Tantilipikorn P., Tufik MA, Vreugde S., Wormald P.-J., Caporaso J.G., Psaltis A.J. Microbiotyping of the synonasal microbiome. Frontiers in cellular and infectious microbiology. 2020;10:137. https://doi.org/10.3389/fcimb.2020.00137
  19. Ivanchenko O.A., Karpishchenko S.A., Sopko O.N., Kozlov R.S., Krechikova O.I., Bravagin I.V., Piskunov G.Z., Lopatin A.S. Microbiome of the maxillary sinus and the middle nasal passage in chronic rhinosinusitis. Rhinology. 2019;54:68-74. https://doi.org/10.4193/Rhin15.018

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies