Features of the microbiota of adults and older people under normal and chronic rhinosinusitis conditions

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

BACKGROUND: Aging is naturally associated with morphofunctional rearrangement.

AIM: This study aimed to examine and compare the microbiota of adult patients with chronic rhinosinusitis aged 60–95 and 45–59 years.

MATERIALS AND METHODS: The study was performed in Volgograd Regional Clinical Hospital No. 1 in an otorhinolaryngological adult department. Laboratory studies and microorganism identification were performed in the bacteriological department of the clinical diagnostic laboratory of Clinic No. 1 of Volgograd State Medical University. All patients underwent endoscopic examination of the nasal cavity with a smear from the middle nasal passage. After sampling, the material was delivered to the laboratory for all bacteriological examinations and microorganism identification.

RESULTS: During the bacteriological study, 6 genera and 12 species of microorganisms were isolated (relative frequency of isolation %), and Staphylococcus spp. (78.45%) and Enterococcus spp. (16.45%) were the main representatives of the microbiota in the nasal cavity of patients aged 45–95 years. Staphylococcus spp. represent the basis of the microbiotype in the sinonasal microbiome and the predominant genus in patients regardless of the pathologies of the nose and paranasal sinuses. Staphylococcus aureus (45.48%), Staphylococcus haemolyticus (19.57%), and Enterococcus faecalis (9.99%) were the three dominant types in all age groups. However, in patients aged 60–95 years with chronic rhinosinusitis, in addition to Staphylococcus spp. (66.67%) and Enterococcus spp. (10.67%), representatives of Pseudomonadales (6.01%) and Candidiales (6.0%) were also observed. In patients aged 60–95 years with chronic rhinosinusitis, the microbial landscape of the nasal mucosa was represented by various strains of Staphylococcus spp.

CONCLUSIONS: The microbiota in patients aged 60–95 years with chronic rhinosinusitis is very diverse compared with those in younger individuals and patients without inflammatory diseases of the nose and paranasal sinuses.

全文:

受限制的访问

作者简介

Natalia Tarasova

Volgograd State Medical University; Volgograd Regional Clinical Hospital No. 1

Email: tarasova-nv@mail.ru
ORCID iD: 0000-0003-1929-5155
SPIN 代码: 7889-4220

MD, Dr. Sci. (Med.), professor

俄罗斯联邦, Volgograd; Volgograd

Irina Stepanenko

Volgograd State Medical University

Email: ymahkina@mail.ru
ORCID iD: 0000-0001-5793-438X
SPIN 代码: 4826-6040
Scopus 作者 ID: 643365

Doctor of Medical Sciences, Professor

俄罗斯联邦, Volgograd

Eleonora Belan

Volgograd State Medical University

Email: belan.eleonora@yandex.ru
ORCID iD: 0000-0003-2674-4289

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Volgograd

Maria Sokolova

Volgograd state medical university; Volgograd Regional Clinical Hospital No. 1

Email: sokolova.zmv@yandex.ru
ORCID iD: 0009-0001-5503-2646

Assistant of the Department of Otorhinolaryngology

俄罗斯联邦, Volgograd; Volgograd

Vyacheslav Kosov

Volgograd State Medical University

编辑信件的主要联系方式.
Email: Slava.kosov.1999@bk.ru
SPIN 代码: 6907-0278
Scopus 作者 ID: 1236738

Postgraduate student

俄罗斯联邦, Volgograd

参考

  1. Lopatin AS, Azizov IS, Kozlov RS. Microbiome of the nasal cavity and paranasal sinuses in normal and pathological conditions. Part I. Russian Rhinology. 2021;29(1):23–30. EDN: XDZDKB doi: 10.17116/rosrino20212901123
  2. Payganova NE, Yastremsky AP. Prospects of antimicrobial peptides application in otorhinolaryngology in conditions of increasing antibiotic resistance. Bulletin of otorhinolaryngology. 2021;86(3):104–109. EDN LUPIQR doi: 10.17116/otorino202186031104
  3. Karpinenko SA, Lavrenova GV, Gaskova PI. Acute nose (presbinazalis) in the practice of an otorhinolaryngologist. Advances in gerontology. 2022;35(2):308–314. EDN: XKQMBU doi: 10.34922/AE.2022.35.2.016
  4. Read TD, Petit RA3rd, Yin Z, et al. USA300 Staphylococcus aureus persists on multiple body sites following an infection. BMC Microbiol. 2018;18(1):206. doi: 10.1186/s12866-018-1336-z
  5. Ramakrishnan VR, Feazel LM, Gitomer SA, et al. The microbiome of the middle meatus in healthy adults. PLoS One. 2013;8(12):e85507. doi: 10.1371/journal.pone.0085507
  6. Bassiuni A, Paramasivan S, Schiffer A, et al. Microbiotyping the synonasal microbiome. Front Cell Infect Microbiol. 2020;10:137. doi: 10.3389/fcimb.2020.00137
  7. Lavrenova GV, Ohanyan KA. Postnasal syndrome in elderly patient. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2023;29(3):86–95. EDN YRWNTK doi: 10.33848/foliorl23103825-2023-29-3-86-95
  8. Stubbendieck RM, May DS, Chevrette MG, et al. Competition among nasal bacteria suggests a role for siderophore-mediated interactions in shaping the human nasal microbiota. Appl Environ Microbiol. 2019;85(10):e02406–18. doi: 10.1128/AEM.02406-18
  9. Bassis CM, Tang AL, Young VB, Pynnonen MA. The nasal cavity microbiota of healthy adults. Microbiome. 2020;2:27. doi: 10.1186/2049-2618-2-27
  10. Lavrenova GV, Ohanyan KA. Drug-induced rhinitis in elderly patients. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2022;28(2):46–52. EDN: AEVULU doi: 10.33848/foliorl23103825-2022-28-2-46-52
  11. Copeland E, Leonard K, Carney R, et al. Chronic rhinosinusitis: Potential role of microbial dysbiosis and recommendations for sampling sites. Front Cell Infect Microbiol. 2018;8:57. doi: 10.3389/fcimb.2018.00057
  12. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504. doi: 10.1146/annurev-physiol-021115-105238
  13. Mahdavinia M, Keshavarzian A, Tobin MC, et al. Comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clin Exp Allergy. 2018;46(1):21–41. doi: 10.1111/cea.12666
  14. Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17(1):87. doi: 10.1186/s12915-019-0703-z
  15. Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704–715. doi: 10.1016/j.chom.2015.03.008
  16. Ipci K, Altintoprak N, Muluk NB, et al. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol. 2017;274(2):617–626. doi: 10.1007/s00405-016-4058-6
  17. Al-Shayeb B, Sachdeva R, Chen LH, et al. Clades of huge phages from across Earth’s ecosystems. Nature. 2020;578(7795):425–431. doi: 10.1038/s41586-020-2007-4
  18. Bassiouni A, Paramasivan S, Schiffer A, et al. Microbiotyping the synonasal microbiome. Front Cell Infect Microbiol. 2020;10:137. doi: 10.3389/fcimb.2020.00137
  19. Ivanchenko OA, Karpishchenko SA, Kozlov RS, et al. The microbiome of the maxillary sinus and middle nasal meatus in chronic rhinosinusitis. Rhinology. 2016;54(1):68–74. doi: 10.4193/Rhin15.018

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Block diagram of the study design. CRS, chronic rhinosinusitis

下载 (261KB)
3. Рис. 2. Бактериальная колонизация слизистой оболочки полости носа у пациентов 45–95 лет (группы 1–3)

下载 (105KB)
4. Рис. 3. Бактериальная колонизация слизистой оболочки полости носа у пациентов 45–95 лет

下载 (105KB)
5. Fig. 5. Bacterial colonization of the nasal mucosa in patients aged 60–95 years with chronic rhinosinusitis (group 1)

下载 (90KB)
6. Fig. 6. Types of microorganisms identified during bacteriological examination in patients aged 45–59 years with chronic rhinosinusitis

下载 (44KB)
7. Fig. 7. Bacterial colonization of the nasal mucosa in patients aged 45–59 years with chronic rhinosinusitis

下载 (89KB)