Platinum nanoelectrocatalysts for hydrogen-air energy sources


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this work was to form new effective electrode materials with platinum nanoparticles on polymer matrix substrates for energy sources. On the basis of atomic force and scanning electron microscopy data the size, shape and distribution of nanoparticles in the polymer matrix had been evaluated. The studies of composites in the reaction of hydrogen oxidation and oxygen reduction by voltammetry allowed to estimate the electrocatalytic activity of the electrodes. The obtained nanomaterials can be used for the construction of chemical energy sources with high specific characteristics.

Full Text

Restricted Access

About the authors

Marina V. Lebedeva

MIREA - Russian Technological University

Email: lebedevamv@mitht.ru
Candidate of Chemical Sciences; associate professor of the Dehartment Physical Chemistry named after Ya.K. Syrkin Moscow, Russian Federation

Alexey P. Antropov

MIREA - Russian Technological University

Email: alexeyantrop@yandex.ru
Candidate of Technical Sciences; associate professor of the Department of Energy Technologies, Systems and Installations Moscow, Russian Federation

Alexander V. Ragutkin

MIREA - Russian Technological University

Email: ragutkin@mirea.ru
Candidate of Technical Sciences; vice-rector for Innovative Development Moscow, Russian Federation

Nicolay A. Yashtulov

MIREA - Russian Technological University

Email: yashtulovna@mail.ru
Doctor of Chemical Sciences; Professor of the Department of Energy Technologies, Systems and Installations Moscow, Russian Federation

References

  1. Ozoemena K.I., Chen S. Nanomaterials for fuel cell catalysis. Springer, 2016. 583 p.
  2. Яштулов Н.А., Лебедева М.В. Водородная энергетика возобновляемых источников тока // Российский технологический журнал. 2017. № 5. С. 58-73.
  3. Sode A., Ingle N.J.C., McCormick M. Controlling the deposition of Pt-nanoparticles within the surface region of Nafion. Journal of Membrane Science. 2011. Vol. 376. No. 1-2. Pр. 162-169.
  4. Kayarkatte M.K., Delikaya Ö., Roth C. Polyacrylic acid-Nafion composites as stable catalyst support in PEM fuel cell electrodes. Materials Today Communications. 2018. Vol. 16. Pр. 8-13.
  5. Ahmed M., Attard G.A., Wright E., Sharman J. Methanol and formic acid electrooxidation on Nafion modified Pd/Pt{111}: the role of anion specific adsorption in electrocatalytic activity. Catalysis Today. 2013. Vol. 202. Pp. 128-134.
  6. Yang H.N., Lee D.C., Park S.H., Kim W.J. Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC. Journal of Membrane Science. 2013. Vol. 443. Pp. 210-218.
  7. Hasanabadi N., Ghaffarian S.R., Hasani-Sadrabadi M.M. Nafionbased magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics. 2013. Vol. 232. Pp. 58-67.
  8. Yashtulov N.A., Lebedeva M.V., Patrikeev L.N., Zaitcev N.K. New polymergraphene nanocomposite electrodes with platinum-palladium nanoparticles for chemical power sources. eXPRESS Polymer Letters. 2019. Vol. 13. No. 8. Pp. 739-748.
  9. Яштулов Н.А., Лебедева М.В., Рагуткин А.В., Зайцев Н.К. Электродные материалы на основе пористого кремния с наночастицами платины для химических источников тока // Журнал прикладной химии. 2018. № 91. С. 232-237.
  10. Hwang M., Elabd Y.A. Impact of ionomer resistance in nanofibernanoparticle electrodes for ultra-low platinum fuel cells. International Journal of Hydrogen Energy. 2019. Vol. 44. No. 12. Pp. 6245-6256.
  11. Kulikovsky A. The effect of Nafion film on the cathode catalyst layer performance in a low-Pt PEM fuel cell. Electrochemistry Communications. 2019. Vol. 103. Pp. 61-65.
  12. Kim T.-H., Yoo J.H., Maiyalagan T., Yi S.-C. Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Applied Surface Science. 2019. Vol. 481. Pp. 777-784.

Supplementary files

Supplementary Files
Action
1. JATS XML


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies