Energetics and Elastic Properties of Large Nano-objects: Orbital-free Approach on the Basis of the Density Functional Theory


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Cohesive energy Ecoh and bulk modulus B of large nanosystems Cn, Sin, Aln и Tin, were calculated in the workframe of the all-electron version of the orbital-free approach on the basis of the density functional theory: number of atoms n was varied up to 4096 for carbon and silicon, 23 328 for aluminum, and 2662 for titanium. Nanosystems were taken as fragments of corresponding crystals. It was found that Ecoh and B tend to their values known for bulk materials. Therefore, it was convincingly shown that our orbital-free approach could be used successfully for study mechanical properties of large nanosystems.

全文:

受限制的访问

作者简介

Victor Zavodinsky

Institute of Applied Mathematics of the Russian Academy of Sciences

Email: vzavod@mail.ru
Ph.D, Dr. Sci. (Phys.-Math.), Profes-sor; leader-researcher at the Khabarovsk Department Khabarovsk, Russian Federation

Olga Gorkusha

Institute of Applied Mathematics of the Russian Academy of Sciences

Email: o_garok@rambler.ru
Cand. Sci. (Phys.-Math.); senior re-searcher at the Khabarovsk Department Khabarovsk, Russian Federation

参考

  1. Hohenberg H., Kohn W. Inhomogeneous electron gas // Physical Review. 1964. No. 136. Pp. B864-B871.
  2. Perdew J.P., Zunger A.S. Self-interaction correction to density functional approximation for many-electron systems // Physical Review. 1981. No. 23. Pp. 5048-5079.
  3. Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method // Physical Review. 1980. No. 45. Pp. 566-569.
  4. Thomas L.H. The calculation of atomic field // Proc. Cambr. Phil. Soc. 1927. No. 23. Pp. 542-548.
  5. Fermi E. Un metodo statistic per la determinazione lcune priorieta dell’atomo // Rend. Accad. Lincei. 1927. No. 6. Pp. 602-607.
  6. v. Weizsacker C.F. Theorie de Kernmassen // Z. Physik. 1935. No. 96. Pp. 431-458.
  7. Kohn W., Sham J.L. Self-consistent equations including exchange and correlation effects // Phys. Rev. 1965. No. 40. Pp. A1133-A1138.
  8. Gomez S., Gonzalez L.E., Gonzalez D.J. et al. Orbital free ab initio molecular dynamic study of expanded liquid Cs // Non-Cryst. Solids. 1999. No. 250-252. Pp. 163-167.
  9. Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. In: Theoretical methods in condensed phase chemistry. Schwartz, S.D.: Springer, Dordrecht, 2002. Pp. 117-184.
  10. Huajie Chen, Aihui Zhou. Orbital-free density functional theory for molecular structure calculations // Numerical Mathematics: Theory, Methods and Applications. 2008. No. 1. Pp. 1-28.
  11. Hung L., Carter E.A. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics // Chem. Phys. Lett. 2009. No. 475. Pp. 163-170.
  12. Karasiev V.V., Chakraborty D., Trickey S.B. Progress on new approaches to old ideas: Orbital-free density functionals. In: Many-electron approaches in physics, chemistry and mathematics. Mathematical physics studies. V. Bach, S.L. Delle (eds.). Schwartz, S.D.: Springer, Dordrecht, 2014. Pp. 113-135.
  13. Sarry A.M., Sarry M.F. To the density functional theory // Physics of Solid State. 2012. No. l54 (6). Pp. 1315-1322.
  14. Bobrov V.B., Trigger S.A. The problem of the universal density functional and the density matrix functional theory // J. Exper. Theor. Phys. 2013. No. 116 (4). Pp. 635-640.
  15. Zavodinsky V.G., Gorkusha O.A. On a possibility to develop a full-potential orbital-free modelling approach // Nanosystems: Physics, Chemistry, Mathematics. 2019. No. 9 (4). Pp. 402-409.
  16. Заводинский В.Г., Горкуша О.А. Полноэлектронный безорбитальный метод моделирования атомных систем: первый шаг // Computational nanotechnology. 2019. Т. 6. № 3. С. 72-76.
  17. Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory // Comp. Phys. Commun. 1999. No. 119. Pp. 67-98.
  18. Houqian Sun, Yun Ren, Zhaofeng Wu, Ning Xu. Density functional calculation of the growth, electronic and bonding properties of titanium clusters Tin (n = 2-20) // Computational and Theoretical Chemistry. 2015. No. 1062. Pp. 74-83.
  19. Waschi H.P., Stoll H., Preuß H. Ab-initio and PCILO calculations of diamond clusters and the corresponding saturated hydrocarbons // Z. Naturforsch. 1978. No. 83. Pp. 358-365.
  20. Robertson J. Diamond-like amorphous carbon // Materials Science and Engineering R. 2002. No. 37. Pp. 129-281.
  21. Ahlrichs R., Elliott S.D. Clusters of aluminium, a density functional study // Phys. Chem. Chem. Phys. 1999. No. 1. Pp. 13-21.
  22. Kiohara V.O., Carvalho E.F.V., Paschoal C.W.A. et al. DFT and CCSD(T) electronic properties and structures of aluminum clusters: Alnx (n = 1-9, x = 0, ±1) // Chemical Physics Letters. 2013. No. 568-569. Pp. 42-48.
  23. Wei S.H., Zeng Zhi, You J.Q. et al. A density-functional study of small titanium clusters // J. Chem. Phys. 2000. No. 113. Pp. 11127-11133.
  24. Tomanek D.S. Calculation of magic numbers and the stability of small Si clusters // Phys. Rev. Lett. 1986. No. 56 (10). Pp. 1055-1058.
  25. Xiaolei Zhu, Zeng X.C. Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7-Si11 // Journal of Chemical Physics. 2003. Vol. 118. No. 8. Pp. 3558-3570.
  26. Заводинский В.Г., Чибисов А.Н., Гниденко А.А., Алейникова М.А. Tеоретическое исследование упругих свойств малых наночастиц с различными типами межатомных связей // Механика композиционных материалов и конструкций. 2005. Т. 11. № 3. С. 337-346.
  27. Вахрушев А.В., Шушков А.А. Моделирование упругой реакции наночастиц на силовое воздействие // Известия Института математики и информатики. 2006. № 2 (36). С. 125-128.
  28. Gerard C., Pizzagalli L. Mechanical behavior of nanoparticles: Elasticity and plastic deformation mechanisms // Journal Pramana of Indian Academy of Sciences. Physics. 2015. Vol. 84. No. 6. Pp. 1041-1048.
  29. Nysten B., Frétigny Ch., Cuenot S. Elastic modulus of nanomaterials: Resonant contact-AFM measurement and reduced-size effect // Proc. SPIE Conf. Vol. 5766: Testing, Reliability, and Application of Micro- and Nano-Material Systems IIIª (SPIE, Bellingham, 2005). R.E. Geer, N. Meyendorf, G.Y. Baaklini, B. Michel (eds.). Pp. 78-88.
  30. Qiong Wu, Wei-shou Miao, Yi-du Zhang et al. Mechanical properties of nanomaterials: A review // Nanotechnol. Rev. 2020. No. 9. Pp. 259-273.
  31. Луняков Ю.В., Балаган С.А. Модуль упругости кремниевых и германиевых фуллеренов Si60 и Ge60 // Физика твердого тела. 2015. Т. 57. Вып. 6. С. 1058-1063.
  32. Магомедов М.Н. Зависимость упругих свойств от размера и формы нанокристалов алмаза, кремния и германия // Журнал технической физики. 2014. Т. 84. Вып. 11. C. 80-90.
  33. Zavodinsky V.G., Kuyanov I.A., Holavkin M.N. Soft elastic behavior of nanometer silicon particles: Computer simulation // Phys. of Low-Dim. Struct. 1999. No. 9/10. Pp. 49-56.

补充文件

附件文件
动作
1. JATS XML


##common.cookie##