Prospects for the Use of Film-Ceramic Photocatalysts for the Cultivation of Microalgae

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There are many types of microalgae that can grow in sea and fresh water, having a high lipid content in their composition. Lipids in microalgae are used for the production of biofuels, cosmetics, medicines and other products. This article is devoted to the assessment of optimal growing conditions for such microalgae, taking into account their individual spectral sensitivity in the maximum use of sunlight. This will make it possible to create film-ceramic composites that provide the greatest increase in biomass with minimal water consumption and time.

Full Text

Restricted Access

About the authors

Rustam Kh. Rakhimov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Author for correspondence.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260

Doctor of Engineering; Head at the Laboratory No. 1 of the Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Uzbekistan, Tashkent

Vladimir P. Yermakov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: labimanod@uzsci.net
ORCID iD: 0000-0002-0632-6680

senior research at the Laboratory No. 1 of the Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Uzbekistan, Tashkent

Temur S. Saidvaliev

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: t.saidvaliyev@imssolar.uz
ORCID iD: 0009-0008-6473-9214

chief engineer at the Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Uzbekistan, Tashkent

References

  1. Energy from algae – a real prospect or utopia? URL: https://www.dw.com/ru/энергия-из-водорослей-реальная- перспектива-или-утопия/a-5204759
  2. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Computational nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.)
  3. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., Mukhtorov D.N. The possibilities of a polyethylene-ceramic composite in comparison with a polyethylene film in real operating conditions. Computational nanotechnology. 2022. Vol. 9. No. 2. Pp. 67–72. (In Rus.) doi: 10.33693/2313-223X-2022-9-2-67-72
  4. Rakhimov R.Kh., Peter J., Ermakov V.P., Rakhimov M.R. Prospects for the use of polymer-ceramic composite in the production of microalgae. Computational nanotechnology. 2019. Vol. 6. No. 4. Pp. 44–48. (In Rus.) doi: 10.33693/2313-223X-2019-6-4-44-48
  5. Ivanova P.V., Natalina A.A. Microalgae as a source of alternative fuel. A Young Scientist. 2020. No. 22 (312). Pp. 591–594. (In Rus.) URL: https://moluch.ru/archive/ 312/70907/
  6. Gong Ya., Jiang M. Biodiesel production using microalgae. URL: https://tr-page.yandex.ru/translate?lang=en-ru& url=https%3A%2F%2Fpubmed.ncbi.nlm.nih.gov%2F21 380528%2F
  7. Microalgae is a promising agricultural crop. URL: https://infoindustria.com.ua/mikrovodorosli-perspektivnaya- selskohozyaystvennaya-kultura
  8. Biofuels from algae. URL: https://vseonauke.com/264166560222153076/biotoplivo-iz-vodoroslej/
  9. Microalgae is a source of alternative fuel. URL: https://cyberleninka.ru/article/n/mikrovodorosli-istochnik- alternativnogo-topliva
  10. Chernova N.I., Kiseleva S.V., Popel’ O.S. Efficiency of the biodiesel production from microalgae. Thermal Engineering. 2014. Vol. 61. No. 6. Pp. 399–405.
  11. Microalgae for biodiesel. URL: https://www.vo-da.ru/articles/energoeffektivnye-los/mikrovodorosli-v-biotoplive
  12. Technology for obtaining products from microalgae. URL: https://lifelib.info/microbiology/microalgae/4.html
  13. Plöhn M., Spain O., Sirin S. et al. Wastewater treatment. Physiol. Plant. 2021. No. 173 (2). Pp. 568–578. doi: 10.1111/ppl.13427
  14. Evaluation of the effectiveness of the use of microalgae for purification and post-treatment of model wastewater from heavy metal ions. URL: https://uios.fedcdo.ru/ocenka-effektivnosti-ispolzovaniya-mikrovodoroslej-dlya-ochistki-i-doochistki-modelnyh-stochnyh-vod-ot-ionov-tyazhelyh-metallov/].
  15. Overview of processes, methods and equipment for drying and extraction of algae. URL: https://sushilka22.ru/articles/vyrashchivanie-i-pererabotka-vodoroslei
  16. Landscaping of deserts. URL: https://www.agroxxi.ru/zhurnal-agroxxi/fakty-mnenija-kommentarii/ozelenenie-pustyn-prosto-dobav-vody.html
  17. Gevorgiz R.G., Shmatok M.G. Lelekov A.S. Calculation of photobiosynthesis efficiency in lower phototrophs. 1. Continuous culture. Ecology of the Sea. 2005. Issue 70. Pp. 31–36. (In Rus.)
  18. Gevorgiz R.G., Malakhov A.S. Recalculation of the illumination value of the photobioreactor into the irradiation value: Textbook. Sevastopol: LLC “Kolorit”, 2018. 60 p.
  19. The effect of the spectral composition of light on the productivity and biochemical composition of microalgae. URL: https://uios.fedcdo.ru/vliyanie-spektralnogo-sostava-sveta-na-produktivnost-i-biohimicheskij-sostav-mikrovodoroslej/
  20. Efimova T.V. The effect of the spectral composition of light on the structural and functional characteristics of microalgae: Abstract of dis. URL: https://www.dissercat.com/content/deistvie-spektralnogo-sostava-sveta-na-strukturnye-i-funktsionalnye-kharakteristiki-mikrovod
  21. Nzayisenga J.C., Farge X., Groll S.L., Sellstedt A. Effects of light intensity on growth and lipid production in microalgae grown in wastewater // Biotechnology for Biofuels. 2020. Vol. 13. Art. No. 4.
  22. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Application of functional ceramics in sterilization processes. Computational nanotechnology. 2021. Vol. 8. No. 1. Pp. 84–94. (In Rus.) DOI: https://doi.org/10.33693/2313-223X-2021-8-1-84-94
  23. Rakhimov R.Kh. Big solar furnace. Computational nanotechnology. 2019. Vol. 6. No. 2. Pp. 141–150 (In Rus.) DOI: https://doi.org/10.33693/2313-223X-2019-6-2-141-150
  24. Rakhimov R.Kh., Rashidov Kh.K., Ermakov V.P. et al. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 4. Computational nanotechnology. 2016. No. 2. Pp. 77–80. (In Rus.)
  25. Rakhimov R.Kh., Kim E.V. US Patent No. 5,472,720. Registration date 5.12.1995.
  26. Rakhimov R.Kh., Mukhtorov D.N. Investigation of a film-ceramic composite in a solar cell. Computational nanotechnology. 2022. Vol. 9. No. 1. Pp. 132–138. (In Rus.) DOI: https://doi.org/10.33693/2313-223X-2022-9-1-132-138

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. From left to right: Z2, ZB0, ZB1. The photos show that there is a strong evaporation under the usual film (the film is heavily fogged, plants are not visible through it), the least evaporation under ZB1

Download (686KB)
3. Fig. 2. The development of plants under the composite ZB1

Download (380KB)
4. Fig. 3. The development of plants under the composite ZB0

Download (345KB)
5. Fig. 4. The development of plants under the composite ZB2

Download (396KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies