Pulse Tunnel Effect: Fundamentals and Prospects for Application

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the first part of the article discusses fundamental aspects of the pulsed tunneling effect as a unified mechanism for describing tunneling phenomena in various fields of physics are considered. The main provisions of the pulsed tunneling theory developed by Keldysh are analyzed. The features of the effect’s implementation in optics, nanoelectronics, perovskites and other materials are examined. The role of coherent radiation is shown. The prospects of regulating material properties and observing non-standard phenomena due to PTE are discussed. In the second part of the article discusses examines the subtleties of the pulsed tunneling effect as a fundamental mechanism of interaction of radiation with matter. The advantages of the ITE compared to the standard quantum tunneling effect are analyzed. Particular attention is paid to the role of radiation coherence and unidirectional polarization during pulsed exposure. The features of the manifestation of effects in optics, nanotechnology and biology are considered. The prospects for using ITEs to create new functional materials and effective technologies are shown.

全文:

受限制的访问

作者简介

Rustam Rakhimov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan

编辑信件的主要联系方式.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260

Dr. Sci. (Eng.), Head of the Laboratory No. 1

乌兹别克斯坦, Tashkent

参考

  1. Goldansky V.I., Trakhtenberg L.I., Fleerov V.N. Tunneling phenomena in chemical physics. Moscow: Nauka, 1986. 296 p.
  2. Blokhintsev D.I. Fundamentals of quantum Mechanics. 4th ed. Moscow, 1963.
  3. Landau L.D., Lifshits E.M. Quantum mechanics (non-relativistic theory). In: Theoretical physics. Vol. III. 3rd ed., rev. and suppl. Moscow: Nauka, 1974. 752 p.
  4. Mohsen R. Квантовая теория туннелирования = Quantum Theory of Tunneling. 2nd ed. Singapore: World Scientific Publishing Co., 2013. 820 с. ISBN: 9814525006.
  5. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Computational Nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.) EDN: YMLCBV
  6. Rakhimov R.Kh., Hasanov R.Z., Yermakov V.P. Comparative frequency characteristics of vibrations generated by the functional ceramics and cavitation generator. Computational Nanotechnology. 2018. No. 4. Pp. 57–70. EDN: YTRCUX
  7. Rakhimov R.Kh., Khasanov R.Z., Ermakov V.P. Frequency characteristics of a resonant oscillator. Computational Nanotechnology. 2017. No. 4. Pp. 6–13. (In Rus.) EDN: YMLCBV
  8. Rakhimov R.Kh. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 8. Fundamentals of the theory of resonance therapy according to the R. Rakhimov method (INFRA R method). Computational Nanotechnology. 2016. No. 4. Pp. 32–135. (In Rus.) EDN: XDMJQV
  9. Parpiev O.R., Suleymanov S.H., Rakhimov R.H. et al. Synthesis of materials on a large solar furnace. Tashkent, 2023. P. 590.
  10. Rakhimov R.Kh., Saidov M.S., Ermakov V.P. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 5. The mechanism of pulse generation by functional ceramics. Computational Nanotechnology. 2016. No. 2. Pp. 81–93. (In Rus.) EDN: WCMIAZ
  11. Rakhimov R.Kh. The use of ceramic materials. Vol. 1. Lambert, Dusseldorf, 2023.P. 278.
  12. Rakhimov R.Kh. The use of ceramic materials. Vol. 2. Lambert, Dusseldorf, 2023.P. 202.
  13. Rakhimov R.Kh. The use of ceramic materials. Vol. 3. Lambert, Dusseldorf, 2023.P. 384.
  14. Rakhimov R.Kh. The use of ceramic materials. Vol. 4. Lambert, Dusseldorf, 2023.P. 220.
  15. Rakhimov R.Kh. The possibilities of pulsed energy converters as photocatalysts in hydrogen energy. In: Proceedings of the III International Conference “Trends in the development of condensed matter Physics” (Fergana, October 30–31, 2023). Pp. 297–300.
  16. Rakhimov R.Kh., Ermakov V.P. Prospects of solar energy: the role of modern solar technologies in hydrogen production. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. (In Rus.) doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
  17. Hydrogen due to light with FC-based photocatalysts based on the ITE principle. URL: https://www.youtube.com/watch?v=2LCj_zz_Tvg
  18. Rakhimov R.Kh., Rashidov H.K., Ernazarov M. Physical methods of influence in the enrichment of technogenic and ore raw materials. In: International Conference “Fundamental and Applied Problems of Modern Physics” (October 19–21, 2023). Pp. 49–51.
  19. Popov V.S. Tunneling and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Advances in Physical Sciences. 2004. Vol. 174. No. 9. Pp. 921–955. (In Rus.)
  20. Fedorov M.V., Keldysh L.V. “Ionization in the field of a strong electromagnetic wave” and modern physics of the interaction of atoms with a strong laser field. JETF. 2016. Vol. 149. Issue 3. Pp. 522–529. (In Rus.)
  21. Ammosov M.V., Delaunay N.B., Krainov V.P. Interaction of atoms with intense radiation. UFN. 1986. Vol. 148. No. 6. (In Rus.)
  22. Nikishov A.I., Ritus V.I. Kinetics of multiphoton processes in strong radiation. JETF. 1966. Vol. 50. No. 4. (In Rus.)
  23. Ris H. Calculations of multiphoton ionization of atoms in a strong laser field. Phys. Rev. A. 1980. Vol. 22. No. 5.
  24. Korkum P.B. High harmonics using strong laser fields. Phys. Rev. Lett. 1993. Vol. 71. No. 11. (In Rus.)
  25. Meshkov M.D. Models of pulsed tunneling phenomena in the interaction of a strong light field with atoms. JETF. 1999. Vol. 116. No. 4. (In Rus.)
  26. Silaev M., Vvedenskii N. Strong-field approximation beyond the Keldysh theory. Phys. Rev. A. 2014. Vol. 90. No. 6. (In Rus.)
  27. Bevz G.P. Physics of atomic laser interactions. Monograph. 2012.
  28. The quantum tunneling effect. A study guide. V.V. Ivanov, A.M. Prokhorov (eds.). 2016.
  29. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Comp. Nanotechnol. 2017. No. 4. Pp. 21–35. (In Rus.) EDN: QIHKBR
  30. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., Mukhtorov D.N. Possibilities of a polyethylene-ceramic composite in comparison with a polyethylene film in real operating conditions. Computational Nanotechnology. 2022. Vol. 9. No. 2. Pp. 67–72. (In Rus.) doi: 10.33693/2313-223X-2022-9-2-67-72. EDN: UYDJMZ
  31. Rakhimov R.Kh., Peter J., Ermakov V.P., Rakhimov M.R. Prospects for the use of polymer-ceramic composite in the production of microalgae. Computational Nanotechnology. 2019. Vol. 6. No. 4. Pp. 44–48. (In Rus.) doi: 10.33693/2313-223X-2019-6-4-44-48. EDN: SKQYLC

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of pulse repetition rate on supplied power

下载 (6KB)


##common.cookie##