Pulse Tunnel Effect: Prospects for Scaling Photocatalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of the study of the synthesis and comparative analysis of film-ceramic composites based on functional ceramics obtained by various methods, including thermomechanochemical and sol-gel methods. The influence of activation of the obtained materials by the pulse tunnel effect on their structure and properties is analyzed. Data on the development of plants under composite films in comparison with the control are presented.

Full Text

Restricted Access

About the authors

Rustam Kh. Rakhimov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Author for correspondence.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN-code: 3026-2619

Dr. Sci. (Eng.), Head, Laboratory No. 1

Uzbekistan, Tashkent

Vladimir V. Pankov

Belarusian State University

Email: pankovbsu@gmail.com
ORCID iD: 0000-0001-5478-0194

Dr. Sci. (Chem.), Professor

Belarus, Minsk

Vladimir P. Yermakov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: labimanod@uzsci.net
ORCID iD: 0000-0002-0632-6680
SPIN-code: 8907-1685

senior research, Laboratory No. 1

Uzbekistan, Tashkent

Temur S. Saidvaliev

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: t.saidvaliyev@imssolar.uz
ORCID iD: 0009-0008-6473-9214

chief engineer

Uzbekistan, Tashkent

Zhasurkhon Kh. Rashidov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: labimanod@uzsci.net
ORCID iD: 0000-0001-5167-1312

junior researcher, Laboratory No. 1

Uzbekistan, Tashkent

Murod R. Rakhimov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: rustam-shsul@yandex.com
ORCID iD: 0000-0003-0686-5681

junior researcher, Laboratory No. 1

Uzbekistan, Tashkent

Khurshid K. Rashidov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: labimanod@uzsci.net
ORCID iD: 0000-0002-9744-6249

senior researcher, Laboratory No. 1

Uzbekistan, Tashkent

References

  1. Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313- 223X-2023-10-3-26-34. EDN: QZQMCA.
  2. Rakhimov R.Kh. Application of ceramic materials. Dusseldorf: Lambert, 2023. Vol. 1. P. 278; Vol. 2. P. 202; Vol. 3. P. 384; Vol. 4. P. 220.
  3. Rakhimov R.Kh. Synthesis of functional ceramics based on BSP and developments based on it. Computational Nanotechnology. 2015. No. 3. Pp. 11–25. (In Rus.)
  4. Rakhimov R.Kh., Pankov V.V., Ermakov V.P. et al. Possibilities of a film-ceramic composite for greenhouses and greenhouses. In: Actual problems of solid state physics. Collection of reports of the X International Scientific Conference (Minsk, May 22–26, 2023). Pp. 481–484.
  5. Rakhimov R.H., Pankov V.V., Ermakov V.P. et al. Investigation of the properties of functional ceramics synthesized by a modified carbonate method. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 130–143. (In Rus.) doi: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
  6. Rakhimov R. United States Patent, № US 5.707.911, 13.01.99, Infrared radiation generating ceramic compositions.
  7. Smye S.W. The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 2001. Vol. 46. Pp. R101–R112.
  8. Huber R. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature. 2001. Vol. 414. Pp. 286–289.
  9. Usanov D.A., Romanova N.V., Saldina E.A. Prospects and trends in the development of terahertz technologies: Patent landscape. Economics of Science. 2017. No. 3. (In Rus.)
  10. Rakhimov R.Kh. Pulsed tunneling effect: Fundamentals and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. (In Rus.). doi: 10.33693/2313-223X-2024-11- 1-193-213. EDN: EWSBUT.
  11. Prather D.W., Shi S., Murakowski J. et al. Photonic crystal structures and applications: Perspective, overview, and development. IEEE Journal of Selected Topics in Quantum Electronics. 2006. No. 12 (6). Pp. 1416–1437.
  12. Terahertz sources and systems (NATO Science Series, Ser. II, Vol. 27). R.E. Miles, P. Harrison, D. Lippens (eds.). Kluwer Academic Publishers, 2001. 350 p.
  13. Van der Weide D. Applications and outlook for electronic terahertz technology. Optics & Photonics News. 2003. Vol. 14. No. 4. Pp. 48–53.
  14. Sekacheva A.Yu., Runina K.I. Synthesis of Luminescent Organic-Inorganic Hybrid Materials by the Solid-Phase Method. Advances in Chemistry and Chemical Technology. 2020. No.4 (227). (In Rus.)
  15. Rakhimov R.Kh., YermakovV.P., Rakhimov M.R. Synthesis of materials by the radiation method and their application. Applied Solar Energy. 2022. Vol. 58. No. 1. Pp. 165–171.
  16. Rakhimov R. US Patent No. US 6.200.501 B1, 13.03.01. Electroconductive ceramic material.
  17. Rakhimov R. US Patent No. US 6.200.501 B1, 13.03.01. Electroconductive ceramic material.
  18. Bashkirov L.A., Letyuk L.M., Pankov V.V. et al. Study of intermediate products in obtaining ferrite powder by low-temperature synthesis. In: Thermodynamic and physicochemical properties of ferrites: Coll. arts. Sverdlovsk, 1987. Pp. 111–113.
  19. Letyuk L.M., Pankov V.V., Litvinov S.V. et al. Study of technological modes of synthesis of Mn-Zn ferrites obtained by thermal vibration milling. In: Thermodynamics and technology of ferrites: Abstract of reports of the VI All-Union Conference. Ivano-Frankovsk, 1988. P. 91.
  20. Bashkirov L.A., Letyuk L.M., Strakhova T.A. et al. Influence of thermomechanical synthesis conditions on the properties of products made of manganese-zinc ferrite powders. In: Mechanochemical synthesis: Abstract of reports of the All-Union Conference. Vladivostok, 1990. P. 103–106.
  21. Pankov V.V., Bashkirov L.A. et al. Influence of thermomechanical treatment conditions on the properties of Mn–Zn ferrite powders. In: Mechanochemistry and mechanoemission of solids: Abstract of reports of the All-Union Conference. Chernigov, 1990. Vol. 2. P. 160.
  22. Zhan Z.L., He Y.D., Wang D.R., Gao W. Low-temperature processing of Fe–Al intermetallic coatings assisted by ball milling. Intermetallics. 2006. No. 14. P. 75.
  23. Waqas H., Qureshi A.H. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J. Therm Anal. Calorim. 2009. No. 98. Pp. 355–360. doi: 10.1007/s10973-009-0289-8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 2. Development of corn under various composites

Download (212KB)
3. Fig. 1. Results of temperature stabilization in greenhouses using composite films with a functional ceramic content of 0.1% (ZB1, ZB2) and conventional polyethylene film (ZB0)

Download (32KB)
4. Fig. П1. Development of wheat under different composites

Download (354KB)
5. Fig. П2. Development of corn under ZB1 composite

Download (112KB)
6. Fig. П3. Development of corn under ZB2 composite

Download (97KB)
7. Fig. П4. Development of corn under ZB3 composite

Download (94KB)
8. Fig. П5. Development of corn under ZB3 composite

Download (97KB)
9. Fig. П6. Development of tomatoes under regular film

Download (170KB)
10. Fig. П7. Development of tomatoes under ZB1 composite

Download (94KB)
11. Fig. П8. Development of tomatoes under ZB2 composite

Download (85KB)
12. Fig. П9. Development of tomatoes under ZB3 composite

Download (88KB)
13. Fig. П10. Development of tomatoes under ZBB composite

Download (93KB)
14. Fig. П11. Development of plants under ordinary film

Download (128KB)
15. Fig. П12. Development of plants under ZB1

Download (101KB)
16. Fig. П13. Development of plants under ZB2

Download (88KB)
17. Fig. П14. Development of plants under ZBB

Download (91KB)
18. Fig. П15. Development of plants under ZB3

Download (89KB)