Potential of Pulsed Tunnel Effect (PTE) to Overcome Technical Barriers of Quantum Computers
- 作者: Rakhimov R.K.1
-
隶属关系:
- Institute of Materials Science of the Academy of Science of Uzbekistan
- 期: 卷 11, 编号 3 (2024)
- 页面: 11-33
- 栏目: ELEMENTS OF COMPUTING SYSTEMS
- URL: https://journals.eco-vector.com/2313-223X/article/view/650751
- DOI: https://doi.org/10.33693/2313-223X-2024-11-3-11-33
- EDN: https://elibrary.ru/PZNUYI
- ID: 650751
如何引用文章
详细
The article discusses the prospects and technical challenges of developing practical quantum computers. It is noted that quantum computers have a unique ability to perform multiple computations simultaneously, due to the use of quantum effects such as superposition and entanglement. This makes them extremely powerful in solving certain types of complex problems, including cryptography, optimization, quantum system modeling, and large database searches. However, the development of practical quantum computers faces serious technical challenges. A key issue is the extreme sensitivity of qubits (the fundamental elements of quantum computers) to external influences, which leads to the disruption of their quantum state. To address this problem, the possibility of using pulsed tunneling effect (PTE) is discussed. This may allow stabilizing the characteristics and quantum states of qubits and thus advance the development of practical quantum computers.
全文:

作者简介
Rustam Rakhimov
Institute of Materials Science of the Academy of Science of Uzbekistan
编辑信件的主要联系方式.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN 代码: 3026-2619
Scopus 作者 ID: 1204344
Dr. Sci. (Eng.), Head, Laboratory No. 1
乌兹别克斯坦, Tashkent参考
- Rakhimov R.H., Ermakov V.P. Pulsed tunnel effect. Features of interaction with the substance. The observer effect. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 116–145. doi: 10.33693/2313- 223X-2024-11-2-116-145. EDN: MWBRQW.
- Rakhimov R.H., Pankov V.V., Saidvaliev T.S. Investigation of the effect of pulsed radiation generated by functional ceramics based on the ITE principle on the characteristics of the Cr2O3—SiO2—Fe2O3—CaO—Al2O3—MgO—CuO system. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 146–157. doi: 10.33693/2313-223X-2024-11-2-146-157. EDN: MWPEYI.
- Rakhimov R.H., Ermakov V.P. Features of the polymerization process based on ITE. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 158–174. doi: 10.33693/2313-223X-2024-11-2-158-174. EDN: MXFORZ.
- Rakhimov R.H., Pankov V.V., Ermakov V.P. et al. Pulsed tunneling effect: Test results of film-ceramic composites. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 175–191. doi: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
- Rakhimov R.H. Pulsed tunneling effect: fundamental principles and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. doi: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
- Rakhimov R.H., Pankov V.V., Ermakov V.P., Makhnach L.V. Productive methods for increasing the efficiency of intermediate reactions in the synthesis of functional ceramics. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 224–234. doi: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
- Rakhimov R.H., Ermakov V.P. New approaches to the synthesis of functional materials with specified properties under the action of concentrated radiation and pulsed tunneling effect. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 214–223. doi: 10.33693/2313-223X-2024-11-1-214-223. EDN: EYKREQ.
- Rakhimov R.Kh. Possible mechanism of Pulsed Quantum Tunneling Effect in photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
- Rakhimov R.H., Pankov V.V., Ermakov V.P. et al. Investigation of the properties of functional ceramics synthesized by a modified carbonate method. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 130–143. doi: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
- Rakhimov R.H., Ermakov V.P. Prospects of solar energy: The role of modern solar technologies in hydrogen production. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
- Kamihara Y., Watanabe T., Hirano M., Hosono H. High-temperature superconductivity in iron-based materials. Journal of the American Chemical Society. 2008. No. 130 (11). Pp. 3296–3297.
- Drozdov A.P., Eremets M.I., Troyan I.A. et al. Superconductivity at 203 K in lanthanum/hydrogen under high pressure. Nature. 2015. No. 525 (7567). Pp. 73–76.
- Choi H.J., Roundy D., Sun H. et al. The electron-phonon interaction in MgB2. Nature. 2002. No. 418 (6899). Pp. 758–760.
- Plakida N.M. Electron-phonon coupling and high-Tc superconductivity in cuprates. Physica C: Superconductivity. 2001. No. 364–365. Pp. 334–340.
- Reynolds C.A., Serin B., Wright W.H., Nesbitt L.B. Isotopic effect in superconductors. Phys. Rev. 1951. No. 84. P. 691.
- Kuleev I.I., Kuleev I.G., Bakharev S.M., Inyushkin A.V. The effect of dispersion on phonon focusing and anisotropy of thermal conductivity of silicon single crystals in the boundary scattering mode. Solid State Physics. 2013. Vol. 55. Issue 7. Pp. 1441–1450. (In Rus.)
- Svistunov V.M., Belogolovsky M.B., Khachaturov A.I. Electron-phonon interaction in high-temperature superconductors. UFN. 1993. Vol. 163. No. 2. Pp. 61–79. (In Rus.)
- Iguchi I., Wen Z. Tunnel gap structure and tunneling model of the anisotropic YBaCuO/I/Pb junctions. Physica С. 1991. Vol. 178. No. l. Pp. 1–10.
- Baryakhtar V.G., Belogolovsky M.B., Svistunov V.M., Khachaturov A.I. Features of tunneling into metal oxide ceramics. DAN of the USSR Academy of Sciences. 1989. Vol. 307. No. 4. Pp. 850–853. (In Rus.)
- Ilyushkin A.V., Taldenkov B.Z., Florentyev V.V. Thermal conductivity of single crystals LnBa2Cu3O7 – x. UFN. 1991. Vol. 161. No. 7. Pp. 200–204. (In Rus.)
- Dynes R.C., Sharifi F., Pargellis A. et al. Tunneling spectroscopy in Ва1 – xKxBiO3. Physica С. 1991. Vol. 185–189. Pp. 234–240.
- Tsuda N., Shimada D., Miyakawa N. Phonon mechanism of highTc superconductivity based on the tunneling study of Bi-based cuprates. Physica С. 1991. Vol. 185–189. Pp. 1903–1904.
- Bobrov N.L. Restoration of the electron-phonon interaction function in superconductors using inhomogeneous microcontacts and background correction in the Janson spectra. ZhETF. 2021. Vol. 160. Issue 1 (7). Pp. 73–87. (In Rus.)
- Lykov A.N. On the possibility of a phonon mechanism of superconductivity in cuprate HTS. Solid State Physics. 2022. Vol. 64. Issue 11. Pp. 1631–1637. (In Rus.)
- Schneider E.I., Ovchinnikov S.G. The effect of the electron-phonon interaction on the anisotropic superconducting parameter of the order. Bulletin of the NSU. Series: Physics. 2007. Vol. 2. Issue 1. (In Rus.)
- Gweon G.-H., Sasagawa T., Zhou S.Y. et al. An unusual isotope effect in a hightemperature superconductor. Letters to Nature. 2004. Vol. 430. Pp. 187–190.
- Zhou X.Z., Junren Shi., Yoshida T. et al. Multiple bosonic mode coupling in electron self-energy of (La2 − xSrx)CuO4. Phys. Rev. Lett. 2005. Vol. 95. Pp. 117001–117004.
- Tkach N.V., Fartushinsky R.B. Effect of phonons on the electronic spectrum in semiconductor small-sized quantum dots placed in a dielectric medium. Solid State Physics. 2003. Vol. 45. Issue 7. Pp. 1284–1291. (In Rus.)
- Ovchinnikov S.G., Schneider E.I. Effective Hamiltonian for HTS cuprates taking into account EFV interaction in the mode of strong correlations. JETF. 2005. Vol. 128. Pp. 974–986. (In Rus.)
- Rakhimov R.H., Rashidov H.K., Ermakov V.P. et al. Resource-saving, energy-efficient technology for producing alumina from secondary kaolins of the Angren deposit. Computational Nanotechnology. 2016. No. 1. Pp. 45–51. (In Rus.)
- Schneider E.I., Ovchinnikov S.G. Phonon and magnetic pairing mechanisms in high-temperature superconductors in the mode of strong correlations. Letters in JETF. 2006. Vol. 128. Issue 5. Pp. 974–986. (In Rus.)
- Pintschovius L. Electron-phonon coupling effects explored by inelastic neutron scattering. Phys. Stat. Sol. B. 2005. Vol. 242. Pp. 30–50.
- Rakhimov R.H., Rashidov H.K., Ermakov V.P. et al. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 4. Computational Nanotechnology. 2016. No. 2. Pp. 77–81. (In Rus.)
- Gasumyants V.E., Firsov D.A. Electrons and phonons in quantum-dimensional systems. St. Petersburg: Polytechnic University Publishing House, 2008. 97 p.
- Shitov M.I. Microscopic description of the effects of coupling with phonons in magical and semi-magical nuclei. Abstract of dis. ... of Cand. Sci. (Phys.-Math.). Moscow, 2022.
- Bakharev S.M. Phonon focusing and phonon transport in monocrystalline volumetric and nanoscale materials of cubic symmetry. Abstract of dis. ... of Cand. Sci. (Phys.-Math.). Yekaterinburg, 2015.
补充文件
