Pulsed tunnel effect: new perspectives for controlling superconducting devices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to the study of pulsed tunneling effect and its new prospects in the control of superconducting devices. The quantum nature of electrical resistance, including the quantum Hall effect, the Klitzing quantum resistance, and the Josephson effect, is considered. Particular attention is paid to the role of quantum size effects in the formation of the electrical resistance of nanostructures and molecular conductors. The article highlights new prospects for the use of pulsed tunneling effect to control the characteristics of superconducting devices.

Full Text

Restricted Access

About the authors

Rustam Kh. Rakhimov

Institute of Materials Science of the Academy of Science of Uzbekistan

Author for correspondence.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN-code: 3026-2619

Dr. Sci. (Eng.), Head, Laboratory No. 1

Uzbekistan, Tashkent

References

  1. Rakhimov R.H., Ermakov V.P. Pulsed tunnel effect. Features of interaction with the substance. The observer effect. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 116–145. (In Rus.) doi: 10.33693/2313- 223X-2024-11-2-116-145. EDN: MWBRQW.
  2. Rakhimov R.H., Pankov V.V., Saidvaliev T.S. Investigation of the effect of pulsed radiation generated by functional ceramics based on the ITE principle on the characteristics of the Cr2O3—SiO2—Fe2O3—CaO—Al2O3—MgO—CuO system. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 146–157. (In Rus.) doi: 10.33693/2313-223X-2024-11-2-146-157. EDN: MWPEYI.
  3. Rakhimov R.H., Ermakov V.P. Features of the polymerization process based on ITE. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 158–174. (In Rus.) doi: 10.33693/2313-223X-2024-11-2-158-174. EDN: MXFORZ.
  4. Rakhimov R.H., Pankov V.V., Ermakov V.P. et al. Pulsed tunneling effect: Test results of film-ceramic composites. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 175–191. (In Rus.) doi: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
  5. Rakhimov R.H. Pulsed tunneling effect: fundamental principles and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. (In Rus.) doi: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
  6. Rakhimov R.H., Pankov V.V., Ermakov V.P., Makhnach L.V. Productive methods for increasing the efficiency of intermediate reactions in the synthesis of functional ceramics. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 224–234. (In Rus.) doi: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
  7. Rakhimov R.H., Ermakov V.P. New approaches to the synthesis of functional materials with specified properties under the action of concentrated radiation and pulsed tunneling effect. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 214–223. (In Rus.) doi: 10.33693/2313-223X-2024-11-1-214-223. EDN: EYKREQ.
  8. Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. (In Rus.) doi: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
  9. Rakhimov R.H., Pankov V.V., Ermakov V.P. et al. Investigation of the properties of functional ceramics synthesized by a modified carbonate method. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 130–143. (In Rus.) doi: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
  10. Rakhimov R.H., Ermakov V.P. Prospects of solar energy: The role of modern solar technologies in hydrogen production. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. (In Rus.) doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
  11. Kamihara Y., Watanabe T., Hirano M., Hosono H. High-temperature superconductivity in iron-based materials. Journal of the American Chemical Society. 2008. No. 130 (11). Pp. 3296–3297.
  12. Drozdov A.P., Eremets M.I., Troyan I.A. et al. Superconductivity at 203 K in lanthanum/hydrogen under high pressure. Nature. 2015. No. 525 (7567). Pp. 73–76.
  13. Choi H.J., Roundy D., Sun H. et al. The electron-phonon interaction in MgB2. Nature. 2002. No. 418 (6899). Pp. 758–760.
  14. Plakida N.M. Electron-phonon coupling and high-Tc superconductivity in cuprates. Physica C: Superconductivity. 2001. No. 364-365. Pp. 334–340.
  15. Reynolds C.A., Serin B., Wright W.H., Nesbitt L.B. Isotopic effect in superconductors Phys. Rev. 84, 691 (1951).
  16. Kuleev I.I., Kuleev I.G., Bakharev S.M. Inyushkin A.V. The effect of dispersion on phonon focusing and anisotropy of thermal conductivity of silicon single crystals in the boundary scattering mode. Solid State Physics. 2013. Vol. 55. Issue 7. Pp. 1441–1450. (In Rus.)
  17. Svistunov V.M., Belogolovsky M.B., Khachaturov A.I. Electron-phonon interaction in high-temperature superconductors. UFN. 1993. Vol. 163. No. 2. Pp. 61–79. (In Rus.)
  18. Iguchi I., Wen Z. Tunnel gap structure and tunneling model of the anisotropic YBaCuO/I/Pb junctions. Physica С. 1991. Vol. 178. No. 1. Pp. 1–10.
  19. Baryakhtar V.G., Belogolovsky M.B., Svistunov V.M., Khachaturov A.I. Features of tunneling into metal oxide ceramics. DAN AN USSR. 1989. Vol. 307. No. 4. Pp. 850–853. (In Rus.)
  20. Ilyushkin A.V., Taldenkov B.Z., Florentyev V.V. Thermal conductivity of single crystals LnBa2Cu3O7 – x. UFN. 1991. Vol. 161. No. 7. Pp. 200–204. (In Rus.)
  21. Dynes R.C., Sharifi F., Pargellis A. et al. Tunneling spectroscopy in Ва1 – xKxBiO3. Physica С. 1991. Vol. 185–189. Pp. 234–240.
  22. Tsuda N., Shimada D., Miyakawa N. Phonon mechanism of high Tc superconductivity based on the tunneling study of Bi-based cuprates. Physica С. 1991. Vol. 185–189. Pp. 1903–1904.
  23. Bobrov N.L. Restoration of the electron-phonon interaction function in superconductors using inhomogeneous microcontacts and background correction in the Janson spectra. ZhETF. 2021. Vol. 160. Issue 1 (7). Pp. 73–87. (In Rus.)
  24. Lykov A.N. On the possibility of a phonon mechanism of superconductivity in cuprate HTS. Solid State Physics. 2022. Vol. 64. Issue 11. Pp. 1631–1637. (In Rus.)
  25. Schneider E.I., Ovchinnikov S.G. The effect of the electron-phonon interaction on the anisotropic superconducting parameter of the order. Bulletin of the NSU. Series: Physics. 2007. Vol. 2. Issue 1. (In Rus.)
  26. Gweon G.-H., Sasagawa T., Zhou S.Y. et al. An unusual isotope effect in a hightemperature superconductor. Letters to Nature. 2004. Vol. 430. Pp. 187–190.
  27. Zhou X.Z., Junren Shi., Yoshida T. et al. Multiple bosonic mode coupling in electron self-energy of (La2 − xSrx)CuO4. Phys. Rev. Lett. 2005. Vol. 95. Pp. 117001–117004.
  28. Ovchinnikov S.G., Schneider E.I. An effective Hamiltonian for HTS cuprates taking into account the EFV interaction in the mode of strong correlations. JETF. 2005. Vol. 128. Pp. 974–986. (In Rus.)
  29. Schneider E.I., Ovchinnikov S.G. Phonon and magnetic pairing mechanisms in high-temperature superconductors in the mode of strong correlations. Letters in JETF. 2006. Vol. 128. Issue 5. Pp. 974–986. (In Rus.)
  30. Pintschovius L. Electron-phonon coupling effects explored by inelastic neutron scattering. Phys. Stat. Sol. B. 2005. Vol. 242. Pp. 30–50.

Supplementary files

Supplementary Files
Action
1. JATS XML