The observer effect in the double-slit experiment: the role of experimental parameters in forming the interference pattern
- 作者: Rakhimov R.K.1
-
隶属关系:
- Institute of Materials Science of the Academy of Science of Uzbekistan
- 期: 卷 11, 编号 4 (2024)
- 页面: 173-189
- 栏目: NANOTECHNOLOGY AND NANOMATERIALS
- URL: https://journals.eco-vector.com/2313-223X/article/view/659805
- DOI: https://doi.org/10.33693/2313-223X-2024-11-4-173-189
- EDN: https://elibrary.ru/HJSEPD
- ID: 659805
如何引用文章
详细
Changes in experimental conditions significantly influence the interference pattern in the double-slit experiment, which is determined by various factors, including the distance and width of the slits, the wavelength, the position of the detector, and the spectral properties of the detector itself. The observer effect, manifested in the alteration of quantum objects’ behavior depending on the measurement conditions, underscores the critical importance of experimental conditions in quantum mechanics and their direct impact on the observed results. Understanding these factors deepens our knowledge of quantum interactions and contributes to the development of more reliable and effective quantum systems, such as quantum computers and quantum communication networks. This knowledge opens new horizons in the study of the nature of light and matter, as well as fostering a deeper understanding of the “observer effect” and the application of quantum technologies to practical problems.
全文:

作者简介
Rustam Rakhimov
Institute of Materials Science of the Academy of Science of Uzbekistan
编辑信件的主要联系方式.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN 代码: 3026-2619
Dr. Sci. (Eng.); Head, Laboratory No. 1, Institute of Renewable Energy Sources
乌兹别克斯坦, Tashkent参考
- Rakhimov R.Kh., Ermakov V.P. Pulse tunnel effect. Features of interaction with matter. Observer effect // Computational Nanotechnology, 2024. Vol. 11. No. 2. Pp. 115–144. doi: 10.33693/2313-223X-2024-11-2-115-144. EDN: MWBRQW.
- Cox B., Forshaw D. Quantum Universe. How is that which we cannot see arranged. Moscow: MIF, 2016. 288 p.
- Feynman R. QED – a strange theory of light and matter. Moscow: AST, 2018. 208 p.
- Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect of photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
- Rakhimov R.Kh. Pulsed tunneling effect: Fundamentals and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. doi: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
- Witteman W. CO2 laser. Moscow: MIR, 1990. 360 p.
- Goldansky V.I., Trakhtenberg L.I., Flerov V.N. Tunneling phenomena in chemical physics. Moscow: Nauka, 1986. 296 p.
- Blokhintsev D.I. Fundamentals of quantum mechanics. 4th ed. Moscow: Vysshaya shkola, 1963. 620 p.
- Landau L.D., Lifshitz E.M. Quantum mechanics (nonrelativistic theory). 3rd ed., rev. and suppl. Moscow: Nauka, 1974. Vol. III: Theoretical Physics. 752 p.
- Razavy Mohsen. Quantum theory of tunneling. 2nd ed. Singapore: World Scientific Publishing Co., 2013. 820 p.
- Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon mechanism of transformation in ceramic materials. Computational Nanotechnology, 2017. No. 4. Pp. 21–35. (In Rus.)
- Rakhimov R.Kh., Khasanov R.Z., Ermakov V.P. Comparative frequency characteristics of vibrations generated by the functional ceramics and cavitation generator. Computational Nanotechnology. 2018. No. 4. Pp. 57–70.
- Rakhimov R.Kh., Khasanov R.Z., Ermakov V.P. Frequency characteristics of a resonant oscillation generator. Computational Nanotechnology. 2017. No. 4. Pp. 6–13. (In Rus.)
- Rakhimov R.Kh. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 8: Fundamentals of the theory of resonance therapy by the method of R. Rakhimov (the INFRA R method). Computational Nanotechnology. 2016. No. 4. Pp. 32–135. (In Rus.)
- Parpiev O.R., Suleimanov S.Kh., Rakhimov R.Kh. et al. Synthesis of materials on a large solar furnace. Tashkent, 2023. P. 590.
- Rakhimov R.Kh., Saidov M.S., Ermakov V.P. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 5: Mechanism of pulse generation by functional ceramics. Computational Nanotechnology. 2016. No. 2. Pp. 81–93. (In Rus.)
- Rakhimov R.Kh. Application of ceramic materials. Düsseldorf: LAP Lambert Academic Publishing, 2023. Vol. 1. P. 278.
- Rakhimov R.Kh. Application of ceramic materials. Düsseldorf: LAP Lambert Academic Publishing, 2023. Vol. 2. P. 202.
- Rakhimov R.Kh. Application of ceramic materials. Düsseldorf: LAP Lambert Academic Publishing, 2023. Vol. 3. P. 384.
- Rakhimov R.Kh. Application of Ceramic Materials. Düsseldorf: LAP Lambert Academic Publishing, 2023. Vol. 4. P. 220.
- Rakhimov R.Kh. Potential of pulse energy converters as photocatalysts in hydrogen energy. In: Proc. III Int. Conf. “Trends in the Development of Condensed Matter Physics” (Fergana, October 30–31, 2023). Pp. 297–300.
- Rakhimov R.Kh., Ermakov V.P. Prospects for solar energy: The role of modern solar technologies in hydrogen production. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. (In Rus.). doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
- Rakhimov R.Kh., Rashidov H.K., Ernazarov M. Physical methods of impact in the beneficiation of man-made and ore raw materials. In: International Conference “Fundamental and Applied Problems of Modern Physics”. Tashkent: Physical-Technical Institute of Uzbekistan Academy of Sciences, 2023. Pp. 49–51.
- Popov V.S. Tunneling and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Physics-Uspekhi. 2004. Vol. 174. No. 9. Pp. 921–955. (In Rus.)
- Fedorov M.V. Keldysh’s work “Ionization in the field of a strong electromagnetic wave” and modern physics of interaction of atoms with a strong laser field”. JETP. 2016. Vol. 149. Issue 3. Pp. 522–529. (In Rus.)
- Ammosov M.V., Delone N.B., Krainov V.P. Interaction of atoms with intense radiation. Physics-Uspekhi. 1986. Vol. 148. No. 6. (In Rus.)
- Nikishov A.I., Ritus V.I. Kinetics of multiphoton processes in strong radiation. JETP. 1966. Vol. 50. No. 4. (In Rus.)
- Rees H. Calculations of multiphoton ionization of atoms in a strong laser field. Physical Review A. 1980. Vol. 22. No. 5.
- Korkum P.B. High harmonics using strong laser fields. Physical Review Letters. 1993. Vol. 71. No. 11.
- Meshkov M.D. Models of pulsed tunneling phenomena in the interaction of a strong light field with atoms. JETP. 1999. Vol. 116. No. 4. (In Rus.)
- Silaev M., Vvedenskii N. Strong-field approximation beyond the Keldysh theory. Physical Review A. 2014. Vol. 90. No. 6.
- Bevz G.P. Physics of atomic-laser interactions. Monograph. 2012.
- Quantum tunneling effect. Tutorial. V.V. Ivanov, A.M. Prokhorov (eds.). 2016.
- Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon mechanism of transformation in ceramic materials. Computational Nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.)
- Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., Mukhtorov D.N. Capabilities of polyethylene-ceramic composite in comparison with polyethylene film under real operating conditions. Computational Nanotechnology. 2022. Vol. 9. No. 2. Pp. 67–72. doi: 10.33693/2313-223X-2022-9-2-67-72. (In Rus.)
- Rakhimov R.Kh., Peter J., Ermakov V.P., Rakhimov M.R. Prospects for the use of polymer-ceramic composite in the production of microalgae. Computational Nanotechnology. 2019. Vol. 6. No. 4. (In Rus.). Pp. 44–48. doi: 10.33693/2313-223X-2019-6-4-44-48.
- Bell J.S. On the Einstein Podolsky Rosen paradox. Physics Publishing Co. USA, 1964. Vol. 1. No. 3. Pp. 195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195.
- Leggett A.J., Garg A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Physical Review Letters. 1985. Vol. 54 (9). Pp. 857–860. doi: 10.1103/PhysRevLett.54.857.
- Everett H. III. “Relative State” Formulation of quantum mechanics. Reviews of Modern Physics. 1957. Vol. 29. No. 454. doi: 10.1103/RevModPhys.29.454.
- Menskii M.B. Quantum mechanics: New experiments, new applications, and new formulations of old questions. Uspekhi Fizicheskikh Nauk. Obzorny Problämy. 2000. Vol. 170. No. 6. Pp. 631–648. (In Rus.). doi: 10.3367/UFNr.0170.200006c.0631.
- Xiaodong Chen. A new interpretation of quantum theory. Time as hidden variable. Physics. arXiv: Quantum Physics. 1999. doi: 10.48550/arXiv.quant-ph/9902037.
- Schrödinger E. Mind and matter. Izhevsk: Research Center “Regular and Chaotic Dynamics”, 2000. Pp. 59–60.
补充文件
