Quantum Mechanics and Thermodynamics: Paradoxes and Possibilities
- Authors: Rakhimov R.K.1
-
Affiliations:
- Institute of Material Science of the Academy of Sciences of Uzbekistan
- Issue: Vol 12, No 1 (2025)
- Pages: 138-167
- Section: NANOTECHNOLOGY AND NANOMATERIALS
- URL: https://journals.eco-vector.com/2313-223X/article/view/679156
- DOI: https://doi.org/10.33693/2313-223X-2025-12-1-138-167
- EDN: https://elibrary.ru/MTDVVZ
- ID: 679156
Cite item
Abstract
This paper examines phenomena in quantum mechanics that may initially appear to violate the laws of thermodynamics but actually conform to quantum principles. The discussion includes phenomena such as the impulse tunneling effect (ITE), quantum tunneling that allows particles to pass through potential barriers; superconductivity, where electric current flows without resistance and the wave function collapse that occurs during the measurement of quantum systems. The Zeno effect, where a particle can remain in an excited state under constant observation, and quantum fluctuations related to vacuum energy, leading to the emergence of virtual particles, are also considered. The potential for effective solar energy utilization through ITE is highlighted, even in the presence of insufficient quantum energy in the solar spectrum. Despite the apparent contradictions with the laws of thermodynamics, these quantum phenomena underscore the uniqueness and complexity of the quantum world, enhancing our understanding of physics and demonstrating that quantum mechanics operates within its own principles without violating thermodynamic laws.
Full Text

About the authors
Rustam Kh. Rakhimov
Institute of Material Science of the Academy of Sciences of Uzbekistan
Author for correspondence.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN-code: 3026-2619
Dr. Sci. (Eng.), Head of Laboratory No. 1
Uzbekistan, TashkentReferences
- Reynolds C.A., Serin B., Wright W.H., Nesbitt L.B. Изотопический эффект в сверхпроводниках. Phys. Rev. 1951. No. 84. P. 691.
- Choi H.J., Roundy D., Sun H. et al. The electron-phonon interaction in MgB2. Nature. 2002. No. 418 (6899). Pp. 758–760.
- Drozdov A.P., Eremets M.I., Troyan I.A. et al. Superconductivity at 203 K in lanthanum/hydrogen under high pressure. Nature. 2015. No. 525 (7567). Pp. 73–76.
- Dynes R. C., Sharifi F., Pargellis A. et al. Tunneling spectroscopy in Ва1 – xKxBiO3. Physica C. 1991. Vol. 185–189. Pp. 234–240.
- Gweon G.-H., Sasagawa T., Zhou S.Y. et al. An unusual isotope effect in a hightemperature superconductor. Letters to Nature. 2004. Vol. 430. Pp. 187–190.
- Iguchi I., Wen Z. Tunnel gap structure and tunneling model of the anisotropic YBaCuO/I/Pb junctions. Physica C. 1991. Vol. 178. No. 1. Pp. 1–10.
- Kamihara Y., Watanabe T., Hirano M., Hosono H. High-temperature superconductivity in iron-based materials. Journal of the American Chemical Society. 2008. No. 130 (11). Pp. 3296–3297.
- Pintschovius L. Electron-phonon coupling effects explored by inelastic neutron scattering. Phys. Stat. Sol. B. 2005. Vol. 242. Pp. 30–50.
- Plakida N.M. Electron-phonon coupling and high-Tc superconductivity in cuprates. Physica C: Superconductivity. 2001. No. 364–365. Pp. 334–340.
- Rakhimov R.Kh., Kim E.V. US Patent No. 5,472,720, date of registration05.12.1995.
- Saidov R.M., Touileb K. Improving the formation and quality of weld joints on aluminum alloys during tig welding using flux backing tape. Metals. 2024. No. 14. P. 321. doi: 10.3390/met14030321.Q1.
- Tsuda N., Shimada D., Miyakawa N. Phonon mechanism of high Tc superconductivity based on the tunneling study of Bi-based cuprates. Physica C. 1991. Vol. 185–189. Pp. 1903–1904.
- Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
- Rakhimov R.Kh., Yermakov V.P., Saidvaliev T.S. Prospects for the use of film-ceramic photocatalysts for the cultivation of microalgae. Computational Nanotechnology. 2023. Vol. 10. No. 2. Pp. 60–69. (In Rus.) doi: 10.33693/2313-223X- 2023-10-2-60-69. EDN: BTHXIR.
- Lykov A.N. On the possibility of the phonon mechanism of superconductivity in cuprate HTSCs. Solid State Physics. 2022. Vol. 64. Issue 11. Pp. 1631–1637. (In Rus.)
- Baryakhtar V.G., Belogolovskii M.B., Svistunov V.M., Khachaturov A.I. Features of tunneling into metal oxide ceramics. DAN AN SSSR. 1989. Vol. 307. No. 4. Pp. 850–853. (In Rus.)
- Gasumyants V.E., Firsov D.A. Electrons and phonons in quantum-dimensional systems. St. Petersburg: Polytechnic University Publishing House, 2008. 97 p.
- Svistunov V.M., Belogolovskii M.B., Khachaturov A.I. Electron-phonon interaction in high-temperature super-conductors. Uspekhi Fizicheskikh Nauk. 1993. Vol. 163. No. 2. Pp. 61–79. (In Rus.)
- Bobrov N.L. Reconstruction of the electron-phonon interaction function in superconductors using inhomogeneous microcontacts and background correction in Janson spectra. JEtP. 2021. Vol. 160. Issue 1 (7). Pp. 73–87. (In Rus.)
- Tkach N.V., Fartushinsky R.B. Effect of phonons on the electron spectrum in small-sized semiconductor quantum dots placed in a dielectric medium. Physics of the Solid State. 2003. Vol. 45. Issue 7. Pp. 1284–1291. (In Rus.)
- Rakhimov R.Kh. The big solar furnace. Computational Nanotechnology. 2019. Vol. 6. No. 2. Pp. 141–150. doi: 10.33693/2313-223X-2019-6-2-141-150. (In Rus.)
- Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon mechanism of transformation in ceramic materials. Computational Nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.)
- Rakhimov R.Kh., Mukhtorov D.N. Study of film-ceramic composite in heliodrying. Computational Nanotechnology. 2022. Vol. 9. Issue 1. Pp. 132–138. doi: 10.33693/2313-223X-2022-9-1-132-138. (In Rus.)
- Rakhimov R.Kh., Rashidov H.K., Ermakov V.P. et al. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 4. Computational Nanotechnology. 2016. No. 2. Pp. 77–80. (In Rus.)
- Rakhimov R.Kh. Interrelation and interpretation of effects in quantum mechanics and classical physics. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 98–124. doi: 10.33693/2313-223X-2024-11-3-98-124. EDN: QEHXLV.
- Rakhimov R.Kh. Pulsed tunnel effect: New prospects for controlling superconducting devices. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 161–176. doi: 10.33693/2313-223X-2024-11-3-161-176. EDN: QBGGDW.
- Rakhimov R.Kh. Pulse tunnel effect: Fundamental principles and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. doi: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
- Rakhimov R.Kh. Potential of ITE to overcome technical barriers of quantum computers. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 11–33. doi: 10.33693/2313-223X-2024-11-3-11-33. EDN: PZNUYI.
- Rakhimov R.Kh. Fractals in quantum mechanics: from theory to practical applications. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 125–160. doi: 10.33693/2313-223X-2024-11-3-125-160. EDN: QFISKE.
- Rakhimov R.Kh., Ermakov V.P. Pulse tunneling effect. Features of interaction with matter. Observer effect. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 116–145. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-116-145. EDN: MWBRQW.
- Rakhimov R.Kh., Ermakov V.P. New approaches to the synthesis of functional materials with specified properties under the action of concentrated radiation and pulsed tunneling effect. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 214–223. (In Rus.). doi: 10.33693/2313-223X-2024-11-1-214-223. EDN: EYKREQ.
- Rakhimov R.Kh., Ermakov V.P. Features of the polymerization process based on ITE. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 158–174. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-158-174. EDN: MXFORZ.
- Rakhimov R.Kh., Ermakov V.P. Possible Mechanism of Pulsed Quantum Tunneling Effect in Photocatalysts Based on Nanostructured Functional Ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
- Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., Mukhtorov D.N. Capabilities of a polyethylene-ceramic composite in comparison with polyethylene film under real operating conditions. Computational Nanotechnology. 2022. Vol. 9. No. 2. Pp. 67–72. (In Rus.). doi: 10.33693/2313-223X-2022-9-2-67-72.
- Rakhimov R.Kh., Mukhtorov D.N. Heliodrying of fruits and vegetables using a polyethylene-ceramic composite. Computational Nanotechnology. 2023. Vol. 10. No. 4. Pp. 104–110. (In Rus.). doi: 10.33693/2313-223X-2023-10-4-104-110. EDN: TLZMDV.
- Rakhimov R.Kh., Pankov V.V., Ermakov V.P., Makhnach L.V. Productive methods for increasing the efficiency of intermediate reactions during the synthesis of functional ceramics. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 224–234. (In Rus.). doi: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
- Rakhimov R.Kh., Pankov V.V., Ermakov V.P. et al. Study of the properties of functional ceramics synthesized by a modified carbonate method. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 130–143. (In Rus.). doi: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
- Rakhimov R.Kh., Pankov V.V., Ermakov V.P. et al. Pulsed tunnel effect: Results of tests of film-ceramic composites. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 175–191. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
- Rakhimov R.Kh., Pankov V.V., Saidvaliev T.S. Study of the effect of pulsed radiation generated by functional ceramics based on the ITE principle on the characteristics of the Cr2O3–SiO2–Fe2O3–CaO–Al2O3–MgO–CuO system. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 146–157. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-146-157. EDN: MWPEYI.
- Rakhimov R.Kh., Peter J., Ermakov V.P., Rakhimov M.R. Prospects for using polymer-ceramic composite in microalgae production. Computational Nanotechnology. 2019. Vol. 6. No. 4. Pp. 44–48. (In Rus.). doi: 10.33693/2313-223X-2019-6-4-44-48.
- Rakhimov R.Kh. Optimization of quantum computing: Influence of the Doppler effect on qubit coherence. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pp. 58–76. (In Rus.). doi: 10.33693/2313-223X-2024-11-4-58-76. EDN: GFQRFT.
- Rakhimov R.Kh. Electronegativity and chemical hardness: Key concepts in chemistry. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pp. 154–172. doi: 10.33693/2313-223X-2024-11-4-154-172. EDN: HJJEPR.
- Rakhimov R.Kh. The observer effect in the double-slit experiment: The role of experimental parameters in forming the interference pattern. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pp. 173–189. doi: 10.33693/2313-223X-2024-11-4-173-189. EDN: HJSEPD.
- Rakhimov R.Kh. Fractals and the structure of the universe. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pp. 190–208. doi: 10.33693/2313-223X-2024-11-4-190-208. EDN: HLFIJC.
- Schneider E.I., Ovchinnikov S.G. Phonon and magnetic pairing mechanisms in high-temperature superconductors in the strong correlation regime. JEtP Letters. 2006. Vol. 128. No. 5. Pp. 974–986. (In Rus.)
Supplementary files
