Composite films: results of large-scale tests

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article discusses the results of testing composite films in greenhouse farming, a key sector of agriculture. These materials create optimal conditions for plant growth, significantly increasing yield and reducing costs. Composite films stabilize the temperature inside greenhouses, which is important in a variable climate, and reduce water evaporation, conserving resources, especially in regions with water scarcity. A key aspect of the article is the results of large-scale testing in collaboration with the Chinese company Shanghai Daodun Technology Co., Ltd. The partnership aims to optimize the composition of the films to improve their strength, UV resistance, and thermal insulation properties. This contributes to the development of innovative technologies and enhances competitiveness. Additionally, the article examines trends in greenhouse farming that highlight the importance of eco-friendly technologies. Modern complexes employ methods that minimize negative environmental impacts. Composite films reduce greenhouse gas emissions and improve air quality. Forecasts for 2030 indicate that eco-friendly technologies will become the standard in greenhouse production, increasing yield and reducing environmental impact.

Full Text

Restricted Access

About the authors

Rustam Kh. Rakhimov

Institute of Materials Science of the Academy of Science of Uzbekistan

Author for correspondence.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN-code: 3026-2619

Dr. Sci. (Eng.); Head, Laboratory No. 1

Uzbekistan, Tashkent

References

  1. Bevz G.P. Physics of atomic-laser interactions. Monograph. 2012.
  2. Blokhintsev D.I. Fundamentals of quantum mechanics. 4th ed. Moscow, 1963.
  3. Goldansky V.I., Trakhtenberg L.I., Flerov V.N. Tunneling phenomena in chemical physics. Moscow: Nauka, 1986. 296 p.
  4. Landau L.D., Lifshitz E.M. Quantum mechanics (non-relativistic theory). 3rd ed., rev. and enlarged. Moscow: Nauka, 1974. 752 p.
  5. Meshkov M.D. Models of pulsed tunneling phenomena in the interaction of a strong light field with atoms. J. Exp. Theor. 1999. Vol. 116. No. 4. (In Rus.)
  6. Popov V.S. Tunneling and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Uspekhi Fizicheskikh Nauk. 2004. Vol. 174. No. 9. Pp. 921–955. (In Rus.)
  7. Rakhimov R.Kh. Interrelation and interpretation of effects in quantum mechanics and classical physics. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 98–124. doi: 10.33693/2313-223X-2024-11-3-98-124. EDN: QEHXLV.
  8. Rakhimov R.Kh. Possible mechanism of the pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
  9. Rakhimov R.Kh. Pulsed tunnel effect: New prospects for controlling superconducting devices. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 161–176. doi: 10.33693/2313-223X-2024-11-3-161-176. EDN: QBGGDW.
  10. Rakhimov R.Kh. Pulsed tunnel effect: Fundamental principles and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. doi: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
  11. Rakhimov R.Kh. Quantum mechanics and thermodynamics: Paradoxes and possibilities. Computational Nanotechnology. 2025. Vol. 12. No. 1. Pp. 138–167. doi: 10.33693/2313-223X-2025-12-1-138-167. EDN: MTDVVZ.
  12. Rakhimov R.Kh. Optimization of quantum computing: Influence of the Doppler effect on the coherence of qubits. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pр. 58–76. doi: 10.33693/2313-223X-2024-11-4-58-76. EDN: GFQRFT.
  13. Rakhimov R.Kh. Potential of ITE for overcoming technical barriers of quantum computers. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 11–33. doi: 10.33693/2313-223X-2024-11-3-11-33. EDN: PZNUYI.
  14. Rakhimov R.Kh. Fractals in quantum mechanics: From theory to practical applications. Computational Nanotechnology. 2024. Vol. 11. No. 3. Pp. 125–160. doi: 10.33693/2313-223X-2024-11-3-125-160. EDN: QFISKE.
  15. Rakhimov R.Kh. Electronegativity and chemical hardness: Key concepts in chemistry. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pp. 154–172. doi: 10.33693/2313-223X-2024-11-4-154-172. EDN: HJJEPR.
  16. Rakhimov R.Kh. Observer effect in a double-slit experiment: The role of experimental parameters in forming an interference pattern. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pp. 173–189. doi: 10.33693/2313-223X-2024-11-4-173-189. EDN: HJSEPD.
  17. Rakhimov R.Kh., Ermakov V.P. Pulse tunneling effect. Features of interaction with matter. Observer effect. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 116–145. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-116-145. EDN: MWBRQW.
  18. Rakhimov R.Kh., Ermakov V.P. New approaches to the synthesis of functional materials with specified properties under the action of concentrated radiation and pulsed tunneling effect. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 214–223. (In Rus.). doi: 10.33693/2313-223X-2024-11-1-214-223. EDN: EYKREQ.
  19. Rakhimov R.Kh., Ermakov V.P. Features of the polymerization process based on ITE. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 158–174. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-158-174. EDN: MXFORZ.
  20. Rakhimov R.Kh., Ermakov V.P. Prospects for solar energy: The role of modern solar technologies in hydrogen production. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. (In Rus.). doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
  21. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon mechanism of transformation in ceramic materials. Computational Nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.)
  22. Rakhimov R.Kh., Mukhtorov D.N. Heliodrying of fruits and vegetables using a polyethylene-ceramic composite. Computational Nanotechnology. 2023. Vol. 10. No. 4. Pp. 104–110. (In Rus.). doi: 10.33693/2313-223X-2023-10-4-104-110. EDN: TLZMDV.
  23. Rakhimov R.Kh., Pankov V.V., Ermakov V.P., Makhnach L.V. Productive methods for increasing the efficiency of intermediate reactions in the synthesis of functional ceramics. Computational Nanotechnology. 2024. Vol. 11. No. 1. P. 224–234. (In Rus.). doi: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
  24. Rakhimov R.Kh., Pankov V.V., Ermakov V.P. et al. Pulsed tunneling effect: Results of testing film-ceramic composites. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 175–191. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
  25. Rakhimov R.Kh., Pankov V.V., Ermakov V.P. et al. Study of the properties of functional ceramics synthesized by a modified carbonate method. Computational Nanotechnology. 2023. Vol. 10. No. 3. P. 130–143. (In Rus.). doi: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
  26. Rakhimov R.Kh., Pankov V.V., Ermakov V.P. et al. Pulsed tunnel effect: Results of tests of film-ceramic composites. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 175–191. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
  27. Rakhimov R.Kh., Pankov V.V., Saidvaliev T.S. Study of the effect of pulsed radiation generated by functional ceramics based on the ITE principle on the characteristics of the Cr2O3–SiO2–Fe2O3–CaO–Al2O3–MgO–CuO system. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 146–157. (In Rus.). doi: 10.33693/2313-223X-2024-11-2-146-157. EDN: MWPEYI.
  28. Fedorov M.V. L.V. Keldysh’s work “Ionization in the field of a strong electromagnetic wave” and modern physics of interaction of atoms with a strong laser field. J. Exp. Theor. Phys. 2016. Vol. 149. No. 3. Pp. 522–529. (In Rus.)
  29. Korkum P.B. High harmonics using strong laser fields. Phys. Rev. Lett. 1993. Vol. 71. No. 11.
  30. Saidov R., Rakhimov R., Touileb K. Comparative analysis of the efficiency of additives of nanostructured functional ceramics on the properties of welding electrodes. Crystals. 2024. No. 14. Pp. 1–12.
  31. Saidov R., Rakhimov R., Touileb K., Abduraimov S. Study of the influence of additives of nanostructured functional ceramics in the coating of welding electrodes on their welding and technological properties. Engineering, Technology & Applied Science Research. 2024. Vol. 14. No. 5. Pp. 1–7.
  32. Saidov R.M., Touileb K. Improving the formation and quality of weld joints on aluminum alloys during tig welding using flux backing tape. Metals. 2024. No. 14. P. 321. doi: 10.3390/met14030321.Q1.
  33. Silaev M., Vvedenskii N. Strong-field approximation beyond the Keldysh theory. Phys. Rev. A. 2014. Vol. 90. No. 6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix 1
Download (352KB)

Copyright (c) 2025 Yur-VAK

License URL: https://www.urvak.ru/contacts/