Study of Magnetic Field Generation in Chiral Copper Nanotubess

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The magnetic fields generated by chiral copper nanotubes are calculated. The number of ballistic transport channels, low-temperature electron currents, and magnetic fields in nanosolenoids based on copper nanotubes of various structures are determined. The results indicate that chiral nanotubes can be used to create nanosolenoids with desired characteristics.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

Dmitry Krasnov

Mendeleev University of Chemical Technology of Russia

Email: drygodo@gmail.com
expert at the Department of Operation of Automated Information Systems Moscow, Russian Federation

Eleonora Koltsova

Mendeleev University of Chemical Technology of Russia

Email: koltsova.e.m@muctr.ru
Dr. Sci. (Eng.), Professor; Head at the Department of Information Computer Technologies Moscow, Russian Federation

Әдебиет тізімі

  1. Murphy C.J., Sau T.K., Gole A.M. Anisotropic metal nano-particles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B. 2005. Vol. 109. Pp. 13857-13870. URL: https://doi.org/10.1021/jp0516846
  2. Oshima Y., Onga A., Takayanagi K. Helical gold nanotube synthesized at 150 K. Physical Review Letters. 2003. Vol. 91. P. 205503. URL: https://doi.org/10.1103/PhysRevLett.91.205503
  3. Kharche N., Manjari S.R., Zhou Y. et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. Journal of Physics: Condensed Matter. 2011. Vol. 23. P. 085501. URL: https://doi.org/10.1088/0953-8984/23/8/085501
  4. Kumar A., Kumar A., Ahluwalia P.K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E: Low-dimensional Systems and Nanostructures. 2012. Vol. 46. Pp. 259-269. URL: https://doi.org/10.1016/j.physe.2012.09.032
  5. Hsiao J.C., Fong K. Making big money from small technology. Nature. 2004. Vol. 428. Pp. 218-220. URL: https://doi.org/10.1038/428218a
  6. Lu W., Lieber C.M. Nanoelectronics from the bottom up. Nature Materials. 2007. Vol. 6. Pp. 841-850. URL: https://doi.org/10.1038/nmat2028
  7. Natelson D. Best of both worlds. Nature Materials. 2006. Vol. 5. Pp. 853-854. URL: https://doi.org/10.1038/nmat1769
  8. Landauer R. Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine. 1970. Vol. 21. Pp. 863-867. URL: https://doi.org/10.1080/14786437008238472
  9. Zhang Z.Y., Miao C., Guo W. Nano-solenoid: Helicoid carbon-boron nitride hetero-nanotube. Nanoscale. 2013. Vol. 5. Pp. 11902-11909. URL: https://doi.org/10.1039/C3NR02914J
  10. James C.R., Long J.E., Manning D.E. Significant multi Tesla fields within a solenoid encircled by nanostructure windings. Scientific Reports. 2019. Vol. 9. Pp. 1-11. URL: https://doi.org/10.1038/s41598-018-38306-8
  11. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Electrochemically deposited copper nanotubes. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2017. Vol. 11. Pp. 270-275. URL: https://doi.org/10.1134/S1027451017010281
  12. Venkata Kamalakar M., Raychaudhuri A.K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Advanced Materials. 2008. Vol. 20. Pp. 149-154. URL: https://doi.org/10.1002/adma.200700430
  13. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Tunable synthesis of copper nanotubes. IOP Conference Series: Materials Science and Engineering. - IOP Publishing. 2016. Vol. 110. P. 012013. URL: https://doi.org/10.1088/1757-899X/110/1/012013
  14. Krasnov D.O., Zhensa A.V., Koltsova E.M. Magnetic properties of chiral copper nanotubes. Nanotechnology and Nanomaterials. 2022. Vol. 9. No. 3. Pp. 68-72. URL: https://doi.org/10.33693/2313-223X-2022-9-3-68-72
  15. Zhang K., Zhang H. Plasmon coupling in gold nanotube assemblies: Insight from a time-dependent density functional theory (TDDFT) calculation. Journal of Physical Chemistry C. 2014. Vol. 118. No. 1. Pp. 635-641. URL: https://doi.org/10.1021/jp410056u
  16. Dyachkov P.N., Dyachkov E.P. Magnetic properties of chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2020. Vol. 65. Pp. 1196-1203. (In Rus.) URL: https://doi.org/10.1134/S0036023620070074
  17. Dyachkov P.N., Dyachkov E.P. Modeling of nanoscale electromagnets based on gold finite nanosolenoids. ACS Omega. 2020. Vol. 5. Pp. 5529-5533. URL: https://doi.org/10.1021/acsomega.0c00167
  18. Khoroshavin L.O., Krasnov D.O., Dyackov P.N. et al. Electronic properties of achiral and chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2017. Vol. 62, Pp. 783-789. URL: https://doi.org/10.1134/S0036023619010145
  19. Krasnov D.O., Khoroshavin L.O., Dyachkov P.N. Spin-orbit coupling in single-walled gold nanotubes.Russian Journal of Inorganic Chemistry. 2019. Vol. 64. Pp. 108-113. (In Rus.) URL: https://doi.org/10.1134/S0036023619010145

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>