Algorithm for detection of head tremor according to data of a smartphone video camera of a biomedical monitoring system

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Modern conditions demand active digitization from humanity across various spheres of activity and daily life, facilitating faster task completion and simplifying processes. Self-diagnosis allows individuals to identify symptoms, which can serve as a basis for consulting medical professionals, especially crucial in critical situations where lives are at stake. Thus, it is clear that the development of such systems is a relevant challenge. In this context, head tremor plays a significant role as it may indicate the presence of Parkinson’s disease or multiple sclerosis. The aim of this work is to develop a head tremor detection module suitable for integration into smartphone applications. The study employs a method based on analyzing data from the optical sensor, namely the front camera of the smartphone. This method utilizes an open machine learning model, ML Kit, for facial recognition, along with a specially designed algorithm for processing results. Testing demonstrated an accuracy of 0.92 according to the accuracy metric. This approach offers a novel method for detecting head tremors and highlights the effectiveness of using ML Kit’s standard model for similar tasks on smartphones, which can also be applied within a larger biomedical diagnostic system.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Anton Egorchev

Kazan (Volga Region) Federal University

Хат алмасуға жауапты Автор.
Email: anton@egorchev.ru

Cand. Sci. (Eng.); Director, Institute of Computational Mathematics and IT

Ресей, Kazan, Republic of Tatarstan

Dmitry Chikrin

Kazan (Volga Region) Federal University

Email: dmitry.kfu@ya.ru
ORCID iD: 0000-0003-1358-8184

Dr. Sci. (Eng.); Director, Institute of Artificial Intelligence, Robotics and System Engineering

Ресей, Kazan, Republic of Tatarstan

Dmitry Pashin

Kazan (Volga Region) Federal University

Email: dmitry.m.pashin@gmail.com

Dr. Sci. (Eng.); Vice-Rector for Digital Transformation and Innovation

Ресей, Kazan, Republic of Tatarstan

Adel Fakhrutdinov

Kazan (Volga Region) Federal University

Email: timvaz@yandex.ru
ORCID iD: 0009-0002-7520-9223

graduate student, Institute of Physics

Ресей, Kazan, Republic of Tatarstan

Әдебиет тізімі

  1. Fedorovich A.A., Gorshkov A.Y., Korolev A.I., Drapkina O.M. Smartphone in medicine – from a reference book to a diagnostic system. Review of the current state of the issue. Cardiovascular Therapy and Prevention. 2022. No. 9. Pp. 66–74. (In Rus.)
  2. Vu J.P., Cisneros E., Lee H.Y. et al. Head tremor in cervical dystonia: Quantifying severity with computer vision. Journal of the Neurological Sciences. 2022. No. 434. Pp. 120–154. doi: 10.1016/j.jns.2022.120154.
  3. Elble R., Hellriegel H., Raethjen J., Deuschl G. Assessment of head tremor with accelerometers versus gyroscopic transducers. Movement Disorders Clinical Practice. 2016. No. 4. Pp. 205–211.
  4. Liu W., Lin X., Chen X., Wang Q. Vision-based estimation of MDS-UPDRS scores for quantifying Parkinson’s disease tremor severity. Medical Image Analysis. 2023. No. 85. Pp. 637–647.
  5. Elble R., Ondo W. Tremor rating scales and laboratory tools for assessing tremor. Tremor and Other Hyperkinetic Movements. 2022. No. 435. Pp. 1–10.
  6. Elble R., McNames J. Using portable transducers to measure tremor severity. Tremor and Other Hyperkinetic Movements. 2016. No. 6. Pp. 1–12.
  7. Frolov S.V., Gorbunov A.V., Potlov A.Y. Recording and analyzing tremors using a webcam-based motion detector. Biomedicine. 2012. No. 2. Pp. 80–83. (In Rus.)
  8. Govorova T.G., Tappahov A.A., Popova T.E., Antipina U.D. Tremor: Classification, clinical characteristics. Consilium Medicum. 2018. No. 9. Pp. 95–100. (In Rus.)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Structure diagram of the head tremor detection system

Жүктеу (87KB)
3. Fig. 2. GUI for launching the measurement procedure window

Жүктеу (139KB)
4. Fig. 3. Visual indication in the GUI of the video data analysis process

Жүктеу (54KB)
5. Fig. 4. Facial contour analysis algorithm presented as a block diagram

Жүктеу (224KB)