COMPUTER MODELING THIN FILM GROWTH ON THE SURFACE BY LOW ENERGY CLUSTER DEPOSITION


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A report is presented about progress in the understanding of the properties of bi-metallic nanoparticles, their interaction with surfaces subsequent to low energy slowing down and the properties of nanostructured materials formed with these particles. A nanoparticle contains from a few atoms for the smallest ones to several thousand for the largest ones considered here. The properties of an atom result from quantization and the same is true for the molecules they form. The same is thus true for the smallest nanoparticles. At the other edge, many of the properties of macroscopic materials are well described by a classical approach and nanoparticles appear as objects at the fringing field between quantum and classical behaviors. In the study of their properties, using either a quantum or a classical approach, atomic scale methods appear as naturally well-suited. Atoms are considered as individual objects interacting via their outer shell electrons only. However even with such an approximation, solving the Schrödinger equation becomes quickly prohibitively heavy as the number of atoms involved increases. For the heaviest elements, relativistic effects make the problem even heavier.

Texto integral

Acesso é fechado

Sobre autores

Ramizulla Muminov

Physico-Technical Institute of the SPA “Physics-Sun”, Akademy of sciences of Uzbekistan

Email: detector@uzsci.net
doctor of physical and mathematical sciences, academican of the Akademy sciences of the Republic Uzbekistan Tashkent, Uzbekistan

Akbarali Rasulov

Tashkent University of Information Technologies Ferghana branch

Email: arasulov59@mail.ru
doctor of physical and mathematical sciences, professor Ferghana, Uzbekistan

Nodir Ibragimov

Ferghana Polytechnic Institute

Email: n_ibrohimov@mail.ru
Senior teacher Ferghana, Uzbekistan

Bibliografia

  1. Henglein A. J. Phys. Chem. 1979. 83, 2858.
  2. Henglein A., Mulvaney P., Linnert T., Holzwarth A. J. Phys. Chem 1992. 96, 2411
  3. Henglein A., Mulvaney P., Holzwarth A., Sosebee T.E., Busenges B. Phys. Chem. 1992. 96, 754.
  4. Henglein A., Giersig M. J. Phys. Chem. 1994. 98, 6931
  5. Torigoe K., Nakajima Y., Esumi K. J. Phys. Chem. 1993. 97, 8304
  6. Liz-Marzan L.M., Philips A.P. J. Phys. Chem. 1995. 99, 15120
  7. Rousset J.L., Cadrot A.M., Aires F.S., Renouprez A., Mélinon P., Perez A., Pellarin M., Vialle J.L., Broyer M. Surf. Rev. Lett. 1996. 3, 1171
  8. Rousset J.L., Renouprez A., Cadrot A.M. Phys. Rev. 1998. B58, 2150
  9. Rousset J.L., Bertolini J.C., Miegge P. Phys. Rev. 1996. B53, 4947.
  10. Zhurkin E.E., Hou M. J. Phys. Condens. Matter. 2000. 12, 6735
  11. Van Hoof T., Hou M. Appl. Surf. Sci. 2004. 226, 94
  12. Van Hoof T., Hou M. Eur. Phys. J. 2004. D29, 33.
  13. Hou M., El Azzaoui M., Pattyn H., Verheyden J., Koops G., Zhang G. Phys. Rev. 2000. B62, 5117.
  14. Hsieh H., Averback R.S., Sellers H., Flunn C.P. Phys. Rev. 1992. B45, 4417.
  15. Hou M. Nucl. Instr. and Methods. 1998. B135, 501.
  16. Pauwels B., Van Tendeloo G., Zhurkin E.E., Hou M., Verschoren G., Theil Kuhn L., Bouwen W., Lievens P. Phys. Rev. 2001. B63, 165406-1.
  17. Kharlamov V.S., Zhurkin E.E., Hou M. Nucl. Instr. Methods. 2002. B193, 538.
  18. Bardotti L., Prével B., Mélinon P., Perez A., Hou Q., Hou M. Phys. Rev. 2000. B62, 2835.
  19. Müller K.-H. J. Apll. Phys. 1987. 61, 2516.
  20. Hou Q., Hou M., Bardotti L., Prével B., Mélinon P., Perez A. Phys. Rev. 2000. B62, 2825.
  21. Hou M., Kharlamov V.S., Zhurkin E.E. Phys. Rev. 2002. B66, 195408-1.
  22. Dekoster J., Degroote B., Pattyn H., Langouche G., Vantomme A., Degroote S. Appl. Phys. Lett. 1999. 75, 938.
  23. Mélinon P., Paillard V., Dupuis V., Perez A., Jensen P., Hoareau A., Perez J.P., Tuaillon J., Broyer M., Vialle J.L., Pellarin M., Baguenard B., Lerme J. Int. J. Mod. Phys. 1995. B139, 339.
  24. Piseri P., Podestà A., Barborini E., Milani P. Rev. Sci. Instr. 2001. 72, 2261.
  25. Swope W.C., Andersen H.W., Berens P.H., Wilson K.R. J. Chem. Phys. 1982. 76, 1.
  26. Oh D.J., Johnson R.A. J. Mater. Res. 1988. 3, 471. Johnson R.A. Phys. Rev. 1989. B39, 12554.
  27. Dzhurakhalov A., Rasulov A., Van Hoof T., Hou M. Ag-Co clusters deposition on Ag (100): an atomic scale study // European Physical J. 2004. D31, Р. 53-61.
  28. Gropp W., Lusk E. User’s Guide for mpich, a Portable Implementation of MPI Version 1.2.1
  29. Hou Q., Hou M., Bardotti L., Prével B., Mélinon P., Perez A. Phys. Rev. 2000. B62, 2825.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies