Development of an algorithm for optimizing energy consumption in chemical-technological systems based on statistical training


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The purpose of the research. The aim of the study is to develop approaches to solving the problems of optimizing the energy resources of chemical-technological systems based on statistical training. As the main research methods, the article uses graphical and tabular tools for descriptive data analysis to study the dynamics of the structure of energy carriers and determine possible reserves for reducing consumption; method of training neural networks to predict optimal values of energy consumption. Results. The article analyzes the current trends in the energy intensity of the cost of chemical production with an assessment of the degree of transformation of the structure of the energy portfolio and possible reserves for reducing the specific weight of electrical and thermal energy. The method of training neural articles using a regression predictive model was used to determine the minimum possible values of the parameter of energy resources consumption at the upper limit of the range, taking into account the limitations of the technological regulations for the production of chemicals and chemical products. The results of the study are applicable in the development of software complexes for intelligent energy systems, in the process of determining the cause-and-effect relationships of deviations in resource consumption from a given trajectory and the optimal vector of sustainable energy consumption.

Texto integral

Acesso é fechado

Sobre autores

Tatyana Malysheva

Kazan National Research Technological University

Email: tv_malysheva@mail.ru
Cand. Sci. (Econ.), Associate Professor Kazan, Russian Federation

Bibliografia

  1. Аунг М.Т., Аббас С.А., Жукова Н.А., Чернокульский В.В. Модели управления процессами сбора данных в сетях интернета вещей с динамической структурой // Computational nanotechnology. 2020. № 3. С. 62-71. doi: 10.33693/2313-223x-2020-7-3-62-71.
  2. Информационно-технический справочник по наилучшим доступным технологиям ИТС 18-2116 «Производство основных органических химических веществ». Бюро НТД, 2016. 337 с.
  3. Лотов А.В., Рябиков А.И. Простая эффективная гибридизация классической глобальной оптимизации и генетических алгоритмов многокритериальной оптимизации // Журнал вычислительной математики и математической физики. 2019. Т. 59. № 10. С. 1666-1680.
  4. Малышева Т.В. Использование автоматизированных информационных систем в управлении экологической устойчивостью обрабатывающих производств // Проблемы машиностроения и автоматизации. 2019. № 2. С. 148-153.
  5. Малышева Т.В., Шинкевич А.И. Разработка алгоритмизированной модели реализации проекта по экологизации промышленного производства // Известия Самарского научного цента Российской академии наук. 2020. № 4 (69). С. 74-80.
  6. Манусов В.З., Матренин П.В., Орлов Д.В. Оптимизация коэффициентов трансформации с применением алгоритмов направленного перебора и роевого интеллекта // Проблемы региональной энергетики. 2017. № 1 (33). С. 15-23.
  7. Шинкевич А.И. Оценка уровня ресурсосбережения в нефтехимическом комплексе // Computational nanotechnology. 2019. № 1. С. 34-38.
  8. Шишкова Н.А. Генетический алгоритм как метод оптимизации // Проблемы науки. 2017. Т. 1. № 5 (18). С. 28-30.
  9. Chih-Ta Y., Ming-Feng Ch. A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance // Microsystem Technologies. 2018. № 24 (1). Рp. 125-135.
  10. Gupta N., Khosravy M., Patel N., Dey N. Mendelian Evolutionary Theory Optimization Algorithm // Soft Computing. 2020. № 24 (4). doi: 10.1007/s00500-020-05239-2.
  11. Gupta N., Singh G., Khosravy M. New crossover operators for Real Coded Genetic Algorithm (RCGA). 2015. Track 2: Artificial Intelligence, Robotics and Human-Computer Interaction. 2015. doi: 10.1109/ICIIBMS.2015.7439507.
  12. Haiping M., Sengang Y., Dan S., Minrui F. Conceptual and numerical comparisons of swarm intelligence optimization algorithms // Soft Computin. 2017. № 21 (11). Рp. 3081-3100.
  13. Liyi Zh., Chao X., Teng F. Improved ant colony optimization algorithm based on RNA computing // Automatic Control and Computer Sciences. 2017. № 51. Рp. 366-375.
  14. Meshalkin V.P., Bogomolov B.B., Boldyrev V.S., Zubarev A.M. Intelligent logical information algorithm for choosing energy and resource-efficient chemical technologies // Theoretical Foundations of Chemical Engineering. 2019. № 53 (5). Рp. 709-718.
  15. Salman A., Khan A. Fuzzy goal programming-based ant colony optimization algorithm for multi-objective topology design of distributed local area networks // Neural Computing and Applications. Springer. 2017. № 28. Рp. 1-19.
  16. Sidahmed B. Combining boosting machine learning and swarm intelligence for real time object detection and tracking: towards new meta-heuristics boosting classifiers // International Journal of Intelligent Robotics and Applications. 2017. № 1 (4). Рp. 410-428.
  17. Simon D. Evolutionary Optimization Algorithms. Wiley, 2019. 940 р.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies