Atomic and electronic structure of quantum dots on the basis of CdSe

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Within the framework of the density functional theory, comparative calculations of the total energy and electronic states of CdnSen nanoparticles with a structure of three types: wurtzite, sphalerite and NaCl were performed. It has been shown that for n ≤ 72, the formation of a NaCl type structure is energetically favorable. However, extrapolation of the energy values per Cd–Se atom pair shows that for n > 130 (corresponding to a size of about 2 nm), wurtzite-type particles can be more advantageous than particles with the NaCl structure. The electronic structure of CdnSen, CdnSn, and ZnnSn nanoparticles, as well as CdSe/CdS and CdSe/CdS/ZnS quantum dots, has been studied. It is shown that the ZnS shell not only increases the band gap of a quantum dot, but also significantly increases the intensity of its emission due to the appearance of electronic states near the band gap.

Texto integral

Acesso é fechado

Sobre autores

Victor Zavodinsky

Institute of Applied Mathematics of the Russian Academy of Sciences

Email: vzavod@mail.ru

Doctor of Physics and Mathematics, Professor; leader-researcher at the Khabarovsk Department of the Institute of Applied Mathematicks of the Russian Academy of Sciences

Rússia, Khabarovsk

Olga Gorkusha

Institute of Applied Mathematics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: o_garok@rambler.ru

Candidate of Physics and Mathematics; senior researcher at the Khabarovsk Department of Institute of Applied Mathematics of the Russian Academy of Sciences

Rússia, Khabarovsk

Bibliografia

  1. Имамов Э.З., Муминов Р.А., Рахимов Р.Х. Анализ эффективности солнечного элемента с наноразмерными гетеропереходами // Computational Nanotechnology. 2021. Т. 8. № 4. С. 42–50.
  2. Haken H. Synergetics. Berlin-Heidelberg: Springer, 1977.
  3. Shchukin V.A., Ledentsov N.N., Kopev P.S., Bimberg D. Spontaneous ordering of arrays of coherent strained islands // Phys. Rev. Lett. 1995. Vol. 75. No. 16. Pp. 2968–2971.
  4. Леденцов Н.Н., Устинов В.М., Иванов С.В. и др. Упорядоченные массивы квантовых точек в полупроводниковых матрицах // УФН. 1996. Т. 166. № 4. С. 423–428.
  5. Имамов Э.З., Муминов Р.А., Рахимов Р.Х. и др. Моделирование электрических свойств солнечного элемента с многими наногетеро-переходами // Computational Nanotechnology. 2022. Т. 9. № 4. C. 70–77.
  6. Чепурнов В.И., Раджапов С.А., Долгополов М.В. и др. Задачи определения эффективности для микроструктур SiC*/Si и контактообразования // Computational Nanotechnology. 2021. № 3. С. 59–68.
  7. Долгополов М.В., Чепурнов В.И., Пузырная Г.В. и др. Экспериментальное исследование полупроводниковых структур источника питания на углероде-14 // Физика волновых процессов и радиотехнические системы. 2019. Т. 22. № 3. С. 55–67.
  8. Физика полупроводниковых преобразователей / под ред. акад. РАН, проф. А.Н. Саурова, чл.-корр. АН Татарстана, проф. С.В. Булярского. М.: РАН, 2018. 280 с.
  9. Раджапов С.А., Раджапов Б.С., Джанклич М. и др. Полупроводниковые детекторы ядерного излучения на основе гетеропереходных структур Al–αGe–pSi–Au для измерения малоинтенсивных ионизирующих излучений // Computational Nanotechnology. 2018. № 3, С. 65–67.
  10. Akimchenko A., Chepurnov V., Dolgopolov M. et al. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter // EPJ Web of Conferences. 2017. Vol. 158.
  11. Цой Б. Патент в Евразийском патентном ведомстве (EP2405487 A1. 08.30.2012).
  12. Цой Б. Патент во всемирной организации интеллектуальной собственности (№ WO 2011/040838 A2 07.04.2011).
  13. Пикус Г.Е. Основы теории полупроводниковых приборов М.: Наука, 1965. 448 с.
  14. Rawa M., Calasan M., Abusorrah A. et al. Single diode solar cells–improved model and exact current–voltage analytical solution based on Lambert’s W function // Sensors. 2022. No. 22. P. 4173.
  15. Гурская А.В., Долгополов М.В., Раджапов С.А., Чепурнов В.И. Контакты для SiC-преобразователей в диапазоне нано-микроватт // Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2023. № 1. C. 2310103.
  16. Чепурнов В.И., Гурская А.В., Долгополов М.В., Латухина Н.В. Способ получения пористого слоя гетероструктуры карбида кремния на подложке кремния. Патент № 2653398, получен 18.05.2018, приоритет 19.07.2016.
  17. Долгополов М.В, Сурнин О.Л., Чепурнов В.И. Устройство генерирования электрического тока посредством преобразования энергии радиохимического бета-распада С-14. Патент РФ № 2714690, опубл. 19.02.2020. Бюл. № 5.
  18. Proshchenko V., Dahnovsky Y. Spectroscopic and electronic structure properties of CdSe nanocrystals: Spheres and cubes. Phys. Chem. Chem. Phys. 2014. No. 16. Pp. 7555–7561.
  19. Neeleshwar S., Chen C.L., Tsai C.B. et al. Size-dependent properties of CdSe quantum dots. Phys. Rev. B: Condens. Matter Mater. Phys. 2005. Vol. 71. No. 201307 (1-4).
  20. Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamic. Comput. Phys. Commun. 1997. No. 107. Pp. 187–205.
  21. Kohn W., Sham J.L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965. No. 140. Pp. A1133–A1138.
  22. Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory. Comput. Phys. Commun. 1999. No. 119. Pp. 67–165.
  23. Perdew J.P., Wang Y. Accurate and simple density functional for the electronic exchange energy. Phys. Rev. B. 1986. No. 33. Pp. 8800–8802.
  24. Ceperly D.M., Alder B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980. No. 45. Pp. 566–569.
  25. Perdew J.P., Burke K., Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many electron system. Phys. Rev. B. 1996. No. 54. Pp. 16533–16539.
  26. Hamman D.R. Generalized norm-conserving pseudopotentials. Phys. Rev. B. 1989. No. 40. Pp. 8503–8513.
  27. Troullier N., Martins J.I. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991. No. 43. Pp. 1993–2006.
  28. Soltani N., Gharibshahi E., Saion E. Band gap of cubic and hexagonal CdS quantum dots. Experimental and theoretical studies. Chalcogenide Letters. 2012. Vol. 9. No. 7. Pp. 321–328.
  29. Tran T.K., Park W., Tong W. et al. Photoluminescence properties of ZnS epilayers. Journal of Applied Physics. 1997. No. 81 (6). Pp. 2803. doi: 10.1063/1.363937.
  30. Ong H.C., Chang R.P.H. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry. Applied Physics Letters. 2001. No. 79 (22). P. 3612. doi: 10.1063/1.1419229.
  31. Qadri S.B., Skelton E.F., Hsu D. et al. Size-induced transition-temperature reduction in nanoparticles of ZnS. Physical Review B. 1999. No. 60. Pp. 9191–9193.
  32. de Queiroz A.A.A., Mayler M., Soares D.A.W., Franca É.J.J. Modeling of ZnS quantum dots synthesis by DFT techniques. Journal of Molecular Structure. 2008. No. 873. Pp. 121–129.
  33. Nazerdeylami Somayeh, Saievar Iranizad Esmaiel, Molaei, Mehdi. Optical properties of synthesized nanoparticles ZnS using methacrylic acid as the capping agent. International Journal of Modern Physics: Conference Series. 2012. Vol. 5. Pp. 127–133. doi: 10.1142/S2010194512001936
  34. Borah J.P., Barman J., Sarma K.C. Structural and properties of ZnS nanoparticles. Chalcogenide Letters. 2008. Vol. 5. No. 9. Pp. 201–208.
  35. Pathak C.S., Mishra D.D., Agarawala V., Mandal M.K. Mechanochemical synthesis, characterization and optical properties of zinc sulphide nanoparticles. Indian J. Phys. 2012. No. 86 (9). Pp. 777–781. doi: 10.1007/s12648-012-0133-z.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The structure schemes of the studied (CdSe)n particles with the “wurtzite” structure; the numbers 1, 2, and 3 are the numbers of options. Schemes of particles of minimum sizes are shown: (CdSe)13 for option 1; (CdSe)16 for option 2); (CdSe)24 for option 3. The remaining particles are obtained by adding the appropriate number of layers along the Z: a and b are views from above (in the XY plane); c and d are side views (along the Z axis). Option 1 corresponds to particles with n = 13, 26, 39, 52; option 2 means particles with n = 16, 32, 48, 64, 80; option 3 means particles with n = 24, 48, 72. Black spheres represent Cd atoms, gray spheres represent Se atoms. In each panel, the left figures show the starting configurations, the right ones show the changed arrangement of atoms as a result of relaxation

Baixar (124KB)
3. Fig. 2. Energy per Cd–Se atom pair in CdnSen nanoparticles as a function of the number of atom pairs n: the squares are the results for particles of the rock-salt type; the crosses are the results for sphalerite type particles. The remaining data correspond to particles with the wurtzite structure: triangles is variant 1, circles is variant 2, rhombuses is variant 3. Solid curves is extrapolation using exponential functions

Baixar (65KB)
4. Fig. 3. Electronic structure of Cd32Se32 particles of three types of structure. The vertical dotted line is the Fermi level

Baixar (177KB)
5. Fig. 4. Electronic structure of CdnSen nanoparticles with a wurtzite type structure (option 1) By layers: a – n = 13 (12 valence electrons); b – n = 13 (2 valence electrons); c – n = 26; d – n = 39; e – n = 52. The vertical dotted line shows the position of the Fermi level

Baixar (171KB)
6. Fig. 5. Electronic structure of CdnSen nanoparticles with a wurtzite type structure (option 2) By layers: a – n = 16; b – n = 32; c – n = 48; d – n = 64. The vertical dotted line shows the position of the Fermi level

Baixar (127KB)
7. Fig. 6. Electronic structure of CdnSen nanoparticles with a wurtzite type structure (option 3) By layers: a – n = 24; b – n = 48; c – n = 72. The vertical dotted line shows the position of the Fermi level

Baixar (124KB)
8. Fig. 7. Dependence of the energy gap width on the particle size By layers: a – results for particles of the rock-salt type; the rest layers present results for particles of the wurtzite type: b – option 1; c – option 2; d – option 3

Baixar (120KB)
9. Fig. 8. Calculated photoluminescence (PL) intensities as energy functions for studied systems: a – (CdSe)48; b – (CdSe)48/(CdS)32; c – (CdSe)48/(ZnS)32; d – (CdSe)48/(CdS)16/(ZnS)16

Baixar (66KB)


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies