Remote stimulation of QED scenarios in the Jaynes–Cummings–Hubbard model

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article addresses the important and relevant task of remote induction of quantum dynamic scenarios. This involves transferring such scenarios from donor atoms to a target atom. This induction is based on the enhancement of quantum transitions in the presence of multiple photons of the same transition. We use the quantum master equation for the Tavis-Cummings-Hubbard (TCH) model with multiple cavities connected to the target cavity via waveguides. The dependence of the efficiency and transfer of the scenario on the number of donor cavities, the number of atoms in them, and the bandwidth of the waveguides is investigated.

Texto integral

Acesso é fechado

Sobre autores

Andrey Kuzminskiy

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: s02240471@gse.cs.msu.ru
ORCID ID: 0009-0007-1013-2540
Código SPIN: 7850-8090
Researcher ID: NRB-4530-2025

Department of Supercomputers and Quantum Information Science, Faculty of Computational Mathematics and Cybernetics

Rússia, Moscow

Yury Ozhigov

Lomonosov Moscow State University

Email: ozhigov@cs.msu.ru

Dr. Sci. (Phys.-Math.), Professor, Department of Supercomputers and Quantum Information Science, Faculty of Computational Mathematics and Cybernetics

Rússia, Moscow

Bibliografia

  1. Montagnier L., Aissa J., Ferris S. et al. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Comput. Life Sci. 2009. No. 1. Pp. 81–90. doi: 10.1007/s12539-009-0036-7.
  2. Coghlan A. Scorn over claim of teleported DNA. Newscientist, Phys. & Math. January 12, 2011. Art. 2795.
  3. Jaynes E.T., Cummings F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 1963. Vol. 51. No. 1. Pp. 89–109.
  4. Tavis M.Th. A Study of an N molecule quantized-radiation-field Hamiltonian. Dissertation. arXiv: 1206.0078.
  5. Brassard G. Teleportation as a quantum computation. Physica. 1998. No. D120. Pp. 43–47.
  6. Bennett Ch.H., Brassard G., Popescu S. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters. 1996. No. 76. Pp. 722–725.
  7. McAleese H., Paternostro M. Critical assessment of information back ow in measurement free teleportation. Entropy. 2024. No. 26. P. 780.
  8. Kolar A., Zang A., Chung J. et al. Adaptive, continuous entanglement generation for quantum networks. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022. Pp. 1–6.
  9. Penas G.F., Puebla R., Ramos T. et al. Universal deterministic quantum operations in microwave quantum links. PhysRevApplied. 2022. Art. 17.054038
  10. de Moraes Neto G.D., Andrade F.M., Montenegro V., Bose S. Quantum state transfer in optomechanical arrays. Phys. Rev. 2016. No. A 93. Art. 062339.
  11. Cowan M.L., Bruner B.D., Huse N. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature. 2005. No. 434. Pp. 199–202.
  12. Zhen Feng, Zhen-Wei Gao, Lian-Ao Wu et al. Photonic Newton's cradle for remote energy transport. Phys. Rev. 2019. No. 11. Art. 044009.
  13. Gustin I., Chang Woo Kim, McCamant D.W., Franco I. Mapping electronic decoherence pathways in molecules. PNAS. 2023. No. 120. Art. e2309987120.
  14. Onur Pusuluk, Gokhan Torun, Cemsinan Deliduman. Quantum entanglement shared in hydrogen bonds and its usage as a resource in molecular recognition. Modern Physics Letters B. 2018. No. 32. Art. 1850308.
  15. Van De Geijn R.A., Watts J. Summa scalable universal matrix multiplication algorithm. Concurrency: Practice and Experience. doi: 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. General scheme of remote induction of a dynamic scenario

Baixar (63KB)
3. Fig. 2. Transfer of a dynamic scenario with suppression of the basic transition to level B

Baixar (128KB)
4. Fig. 3. Original scenario with 2 three-level atoms in cavity 0 in the initial highest energy states |S⟩

Baixar (167KB)
5. Fig. 4. Addition to the original scenario of a cavity with atoms with only allowed transitions A

Baixar (150KB)
6. Fig. 5. Graph of the times when the probability of transition A of an atom in cavity 0 becomes greater than all other outcomes, i.e., states |S⟩ and |B⟩, depending on the frequency differences between these levels

Baixar (145KB)
7. Fig. 6. Difference in probabilities between states |A⟩ and |B⟩

Baixar (141KB)
8. Fig. 7. Graph of the times when the probability of transition A of an atom in cavity 0 becomes greater than all other outcomes, i.e., states |S⟩ and |B⟩, depending on the waveguide and photon leakage intensities

Baixar (411KB)
9. Fig. 8. Difference in probabilities between states |A⟩ and |B⟩

Baixar (399KB)

Declaração de direitos autorais © Yur-VAK, 2025

Link à descrição da licença: https://www.urvak.ru/contacts/