Remote stimulation of QED scenarios in the Jaynes–Cummings–Hubbard model
- Authors: Kuzminskiy A.V.1, Ozhigov Y.I.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 12, No 3 (2025)
- Pages: 41-46
- Section: MATHEMATICAL MODELING, NUMERICAL METHODS AND COMPLEX PROGRAMS
- URL: https://journals.eco-vector.com/2313-223X/article/view/680259
- DOI: https://doi.org/10.33693/2313-223X-2025-12-3-41-46
- EDN: https://elibrary.ru/AXMVSR
- ID: 680259
Cite item
Abstract
The article addresses the important and relevant task of remote induction of quantum dynamic scenarios. This involves transferring such scenarios from donor atoms to a target atom. This induction is based on the enhancement of quantum transitions in the presence of multiple photons of the same transition. We use the quantum master equation for the Tavis-Cummings-Hubbard (TCH) model with multiple cavities connected to the target cavity via waveguides. The dependence of the efficiency and transfer of the scenario on the number of donor cavities, the number of atoms in them, and the bandwidth of the waveguides is investigated.
Full Text
About the authors
Andrey V. Kuzminskiy
Lomonosov Moscow State University
Author for correspondence.
Email: s02240471@gse.cs.msu.ru
ORCID iD: 0009-0007-1013-2540
SPIN-code: 7850-8090
ResearcherId: NRB-4530-2025
Department of Supercomputers and Quantum Information Science, Faculty of Computational Mathematics and Cybernetics
Russian Federation, MoscowYury I. Ozhigov
Lomonosov Moscow State University
Email: ozhigov@cs.msu.ru
Dr. Sci. (Phys.-Math.), Professor, Department of Supercomputers and Quantum Information Science, Faculty of Computational Mathematics and Cybernetics
Russian Federation, MoscowReferences
- Montagnier L., Aissa J., Ferris S. et al. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Comput. Life Sci. 2009. No. 1. Pp. 81–90. doi: 10.1007/s12539-009-0036-7.
- Coghlan A. Scorn over claim of teleported DNA. Newscientist, Phys. & Math. January 12, 2011. Art. 2795.
- Jaynes E.T., Cummings F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 1963. Vol. 51. No. 1. Pp. 89–109.
- Tavis M.Th. A Study of an N molecule quantized-radiation-field Hamiltonian. Dissertation. arXiv: 1206.0078.
- Brassard G. Teleportation as a quantum computation. Physica. 1998. No. D120. Pp. 43–47.
- Bennett Ch.H., Brassard G., Popescu S. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters. 1996. No. 76. Pp. 722–725.
- McAleese H., Paternostro M. Critical assessment of information back ow in measurement free teleportation. Entropy. 2024. No. 26. P. 780.
- Kolar A., Zang A., Chung J. et al. Adaptive, continuous entanglement generation for quantum networks. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022. Pp. 1–6.
- Penas G.F., Puebla R., Ramos T. et al. Universal deterministic quantum operations in microwave quantum links. PhysRevApplied. 2022. Art. 17.054038
- de Moraes Neto G.D., Andrade F.M., Montenegro V., Bose S. Quantum state transfer in optomechanical arrays. Phys. Rev. 2016. No. A 93. Art. 062339.
- Cowan M.L., Bruner B.D., Huse N. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature. 2005. No. 434. Pp. 199–202.
- Zhen Feng, Zhen-Wei Gao, Lian-Ao Wu et al. Photonic Newton's cradle for remote energy transport. Phys. Rev. 2019. No. 11. Art. 044009.
- Gustin I., Chang Woo Kim, McCamant D.W., Franco I. Mapping electronic decoherence pathways in molecules. PNAS. 2023. No. 120. Art. e2309987120.
- Onur Pusuluk, Gokhan Torun, Cemsinan Deliduman. Quantum entanglement shared in hydrogen bonds and its usage as a resource in molecular recognition. Modern Physics Letters B. 2018. No. 32. Art. 1850308.
- Van De Geijn R.A., Watts J. Summa scalable universal matrix multiplication algorithm. Concurrency: Practice and Experience. doi: 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2.
Supplementary files










